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1 Introduction

People are generating and collecting more and more data[Baiju]. Increase is not only in the
number of observations like page views on internet website, comments in social media or patients
in genetics study. At the same time we make more and more measurements which lead to
increase in data dimensionality. Those extra variables could be additional characteristics of
user web session, longer sequences of words (n-grams) or more Single Nucleotide Polimorphisms
(SNP) from genome. This vast amount of data poses a number of challenges. Data is abundant,
but not always carefully pre-selected. As digital storage becomes cheaper and cheaper, there
is not too much thought on how data will be actually processed and modeled. An example
of such a case could be tracking data on websites. Every action users make is recorded and
stored, but reasonable processing of this data remains a challenge. This problem also stems
out from the fact that sometimes we honestly do not know what can be found in the data, and
we plan on collecting as much as possible and then do data mining. Another example could
be genomic data, in which we collect information about expression of thousands of genes and
genetic variations of hundreds of thousands of nucleotides (SNP) in DNA, and hope to find the
ones that are connected with certain phenotype or medical condition. There is a big pressure
on transforming data into information and knowledge. This is non trivial and a number of
pitfalls await explorers.

When the number of variables p is greater than the number of observations n, then most
of the classical statistical models become non-identifiable. Let us use as an example linear
model with n× p matrix X. In such case XTX becomes non-invertible, which leads to infinite
number of least-squares solutions. For people without mathematical background this does
not sound dangerous. However, even when n ≈ p, we have a problem of high variance of
estimators, which makes it difficult to draw conclusions from the data. This problem exists for
new estimation methods in machine learning, although it is sometimes ’hidden’ and cannot be
as easily quantified as in the example of linear regression. However in many cases it is reasonable
to assume that despite the fact that data is high dimensional, its intrinsic dimension is much
smaller. This creates an opportunity. Reduction of data dimensionality might lead to more
accurate estimators

The real world examples presented in this thesis come from the field of genetics. One of
the important problems of modern medical studies is the identification of genetic pathways.
Pathways, known also as gene regulatory networks, are groups of molecular regulators that
govern gene expressions. As a result, multiple genes act together, because they have the same
cause. It could be some DNA sequence or some protein. The identification of such pathways
is a step to understand underlying biological processes. There are multiple applications of
that knowledge, one of which is predicting genetic based diseases or expected outcome of
the therapy. One would collect the data (on a gene expression level) from both healthy and
diseased individuals. Ultimate goal would be to distinguish these two groups based on genetic
information. As number of genes in humans is around 22 thousands, the number of variables
can be much larger than the number of individuals p >> n. Because of that, classical statistical
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Chapter 1. Introduction

methods do not work as expected. Motivation behind the methods presented in this thesis is
to identify those genes that ’work together’.

One obstacle that we encounter in such a setting is interpretation of statistical model. This
is an important issue for getting useful, human understandable knowledge from the data. An
example question could be about the effect of given variable on outcome. Let us consider sign
of coefficients in the linear model. If coefficients of two variables are of different signs, then
one might expect them to have contradictory effect on the outcome. However this intuition is
not justifiable when variance is high. This poses problem for data analysis made for scientific
research, for which interpretation of the model is crucial. But there are some even more
gruesome threats. Estimator with high variability has a tendency for overfitting. This manifests
heavily when p is very large. In such a case, great performance on training data is usually not
matched by on test data. The problem with model identification is sometimes discarded by
’practioners’, however poor prediction is a very pragmatic problem. Its roots is sometimes
overfitting which can be addressed by previous dimensionality reduction. This is what makes
this topic a very practical one.

From the analysis of these challenges in the modern data analysis, it becomes obvious that
there is a need for the methods for data dimensionality reduction. The justification for this
reduction and focusing only on sparse models, was well put by [Hastie et al., 2009] who coined
phrase ’bet on sparsity’. If the true model is sparse, then models that assume sparsity have
a good shot at finding it. If true model is dense, then no method would perform well unless
n >> p. This idea that was thought of as a justification for `1 penalty in LASSO describes well
the principal behind most of the ideas and research presented in this thesis.

In this dissertation I focus on the problem of unsupervised dimensionality reduction. Data
we consider does not include any labels. Our goal is to infer its structure and based on that
knowledge reduce dimension of the ambient space. It could be further used to model some
outcome variable, but this is not covered in this thesis. Our focus is on two different data
models.

First one is associated with graphical models [Lauritzen, 1996]. We think of variables as vertices
in the graph. Some of them are connected by edges. Edge between two vertices denotes
dependency, which can be defined in multiple ways. The goal of the estimation is to identify all
of the edges with no or little false positives. This can be viewed as a feature selection problem.
Starting from the complete graph we simplify its structure by discarding some edges.

Second kind of model is the one used in subspace clustering research. It is not explicitly stated,
but one can find it in papers on computer vision, e.g. Elhamifar and Vidal [2009], Vidal and
Favaro [2014], McWilliams and Montana [2014], Agarwal and Mustafa [2004] and it is more
rigorously treated in statistical literature e.g.[Soltanolkotabi et al., 2013], [Tipping and Bishop,
1999b]. In this model we assume that data is generated by a small number of latent variables.
Groups of variables lie in the same subspace. This kind of assumption on data is significantly
different than the one underlying graphical model. Since latent variables are not observed, we
cannot use feature selection and should instead transform data X into a smaller dimension
matrix that consists of latent variables.

Going back to our genetics data motivation. Graph model is proper for the data, when there
are no latent variables. We would assume that genes are in some way dependent and that
dependency should be reflected in the structure of the graph. Ideally, separate connected
components should correspond to different pathways.
Second model assumes that true regulators are not necessarily present in the data. Those are
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Chapter 1. Introduction

unobserved, latent variables. In this case our goal would be to identify genes that are in the
same gene network and to quantify effect of (latent) regulatory elements.

In chapter 2 we introduce all the necessary mathematical and statistical background. We
start with basic theory and two algorithms for solving convex optimization problems. We then
discuss model selection in linear models focusing on penalized regressions with different kinds
of penalty functions. Subsequently, we introduce fixed and probabilistic models for principal
component analysis. After that model and methods for subspace clustering are discussed.
Finally a brief introduction to Gaussian graphical models is provided.

In chapter 3 we consider the classical tool for exploratory data analysis called Principal
Component Analysis. We introduce a new criterion PEnalized SEmi-integrated Likelihood
(PESEL) for a dimensionality reduction by selecting some number of principal components.
Our approach stems from Bayesian approach, more specifically maximum a posteriori (MAP)
rule. To minimize number of prior assumptions we use Laplace method for integrals to get
closed formula for posterior probability. For this criterion we provide a detailed derivation.
We also proof that under some mild conditions, PESEL is consistent meaning that when
n → ∞ number of estimated principal components is almost surely equal to the true number
of principal components. Similar probabilistic model was considered before by [Tipping and
Bishop, 1999a] and [Minka, 2000]. We unified that approach with a case when p > n, which is of
the main interest in this thesis. We argue that one should use appropriate version based on data
dimensions. Furthermore PESEL proves to be more robust than state-of-the-art methods [Choi
et al., 2014], [Josse and Husson, 2012], [Minka, 2000, eq. 76] for estimating number of signal
related Principal Components. At the same time, because its computation burden is equivalent
to performing PCA, PESEL is much faster than full Bayesian methods. Extensive simulation
study is presented, as well as real data example that proves usefulness of the method. This
criterion can be used by researchers as a method for denoising the data. Number of first principal
components should be retained as a signal while the rest is truncated as noise. PESEL was
implemented in R package that is available on github https://github.com/psobczyk/pesel.

In chapter 4 we introduce new method for subspace clustering called Multiple Latent Components
Clustering (MLCC). Just like PESEL, method stems from Bayesian perspective. Specific
prior distributions are assumed and their interpretation is discussed. Formula for maximum
a posteriori is then approximated using Laplace method for integrals. Because our estimation
is based on `0 norm, finding optimal variables clustering is intractable problem. Because of
that we introduce an efficient heuristic algorithm that combines classical k-medoids algorithm
with Bayesian model selection. There were several attempts for using k-means for subspace
clustering (see [Agarwal and Mustafa, 2004] and [Chavent et al., 2012]). However they lacked
mathematical rigor and experienced limitations in comparing subspaces of different dimensions.
Because MLCC is computationally exhaustive, a number of heuristics are demonstrated that
significantly speed it up. To minimize chance of being stuck in local maximum, we run
algorithm multiple times and provide some insight on reasonable warm start. Simulations
study reassures us, that using heuristics does not significantly deteriorate methods performance.
The is introduced and its efficacy is demonstrated, again in extensive simulation study against
methods found in the recent literature. Varclust was implemented in R package that is available
on github https://github.com/psobczyk/varclust.

In chapter 5 we introduce a new method graphical SLOPE for estimating precision matrix in
the problem of Gaussian-Markov random field. Method is an extension of the popular glasso
([Banerjee et al., 2008a] and [Friedman et al., 2008b]). Instead of regularizing likelihood with
`1 penalty, we use sorted `1. This extension was inspired by the method SLOPE [Bogdan et al.,
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Chapter 1. Introduction

2015a] for sparse linear regression, where, under certain conditions and for specific penalty, false
discovery rate (FDR) is controlled. Graphical SLOPE proves to have much higher power at the
cost of treating few zero entries in precision matrix as non-zeros, i.e. introducing small number
of false discoveries. In various simulation scenarios we show that Graphical SLOPE can in fact
control FDR. We introduce a choice of λ parameters that, under certain conditions, controls
FWER, just like glasso does. We prove that our method is guaranteed to have higher power.
Graphical SLOPE and ADMM algorithm for solving SLOPE were efficiently implemented in R
package that is available on github https://github.com/psobczyk/gslope.
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2 Mathematical introduction

Overview

In this chapter we shall introduce notation and the most important notions, techniques and
methods that are going to be used throughout this thesis.

We start this chapter with definitions of optimization problem. We then focus on convex
optimization and introduce two techniques that are used to solve special types of convex
problems. This theory is useful, as numerous statistical methods are defined by being optimal
in some sense, usually being a minimizer of a given function which often can be treated as
convex optimization problem. Then we state some definitions regarding multiple testing and
maximum likelihood. This leads to regularization and variable selection methods. As an
example we selected linear regression which is well described in a literature. Next topic is
dimensionality reduction. We first define PCA and do overview of techniques used to estimate
number of principal components. Then we define a problem of subspace clustering and give
some background behind two methods we shall compare to in a simulation study. Finally we
move to Gaussian graphical models, make a brief introduction and state interpretation of the
precision matrix in multivariate Gaussian distribution.

2.1 Convex optimization

In this section we use notation from [Boyd and Vandenberghe, 2004].

2.1.1 Optimization

Let f0, f1, ..., fk and h1, ..., hs be functions defined on Rp. We consider an optimization problem
of the form

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , k

hi(x) = 0, i = 1, . . . , s.

(2.1)

We say that x ∈ Rp is the optimization variable and the function f0 : Rp → R is the
objective function or cost function. The inequalities fi(x) ≤ 0 are called inequality constraints,
and the equations hi(x) = 0 are called the equality constraints. If there are no constraints (i.e.,
k = s = 0), the problem (2.1) is said to be unconstrained.

Definition 2.1.1 It is stated that b is feasible when it satisfies the constrains ∀i=1,...,kfi(x) ≤ 0
and ∀i=1,...,shii(x) = 0. We say that b is strictly feasible, if it is feasible and additionally for
i = 1, . . . , k it holds fi(x) < 0. Vector x∗ is solution to (3.3), if x∗ is feasible and for all
feasible x ∈ Rp we have f0(x) ≥ f0(x∗). The set of all solutions is denoted by B∗. The problem
is said to have a unique solution, if B∗ is a singleton.

5



Chapter 2. Mathematical introduction 2.1. Convex optimization

Definition 2.1.2 Suppose that set B∗ is nonempty. Then, for all vectors from B∗, the objective
function takes the same value, which will be denoted by f ∗0 and will be called the optimal value
of f0. If B∗ is empty, then we define f ∗0 := −∞.

Definition 2.1.3 We call function L : Rp × Rk × Rs → R Lagrangian associated with the
problem (2.1), if L is of form:

L(x, ν, µ) = f0(x) +
k∑
i=1

νifi(x) +
s∑
i=1

µihi(x) (2.2)

Variables µ = (µ1, . . . , µk) and ν = (ν1, . . . , νk) are called dual variables associated with the
problem (2.1). We say that µi is the Lagrange multiplier associated with the ith equality
constraint and νi is Lagrange multiplier associated with the ith inequality constraint.

Exploiting symmetry, in Lagrangian we can swap primal and dual variables obtaining dual
function and dual optimization problem.

Definition 2.1.4 We define Lagrange dual function g : Rk × Rs → R ∪ {−∞} as

g(ν, µ) = inf
x
L(x, ν, µ) (2.3)

Definition 2.1.5 (Dual problem)
Taking function (2.3) as an objective, we define Lagrange dual problem as

maximize
ν,µ

g(ν, µ)

subject to ν � 0.
(2.4)

The pair (µ∗, ν∗), being solution to (2.4), is referred to as the dual solution. We will denote
by f ∗ and g∗ the optimal values for primal and dual problem respectively. It always occurs
g∗ ≤ f ∗, which is called weak duality.

Definition 2.1.6 (Strong duality)
Let f ∗ and g∗ the optimal values for primal and dual problem respectively. Then value f ∗−g∗ is
known as the duality gap. We say that strong duality holds for optimization problem if duality
gap is equal to zero.

2.1.2 Convexity

We say that the function f : Rp → R is convex if for every x, x̃ ∈ Rp and every α ∈ [0, 1],

f(αx+ (1− α)x̃) ≤ αf(x) + (1− α)f(x̃) (2.5)

We say that f is strictly convex if inequality 2.5 is strict for all x 6= x̃ and α ∈ (0, 1).

Lemma 2.1.7 (Operations preserving convexity) The following comes from chapter 3 of
from [Boyd and Vandenberghe, 2004]. Let f1, f2, fm be convex functions. Then:

• non-negative weighted sum f := w1f1 + · · ·+ wkfk is convex

6



Chapter 2. Mathematical introduction 2.1. Convex optimization

• composition with an affine mapping. Suppose f : Rn → R. A ∈ Rn×m, b ∈ Rn and define
g : Rm → R by g(x) = f(Ax+ b). Then g is convex

• pointwise maximum f(x) := maxi fi(x) is convex

Definition 2.1.8 Convex optimization problem is an optimization problem (2.1) in which
objective function and inequality constraint functions f0, f1, ..., fk are convex and h1, ..., hs are
affine.

Proposition 2.1.9 Suppose that the objective function in convex optimization problem is strictly
convex. If a solution exists, then this solution is unique.

Proof
Suppose this proposition is false.

Assume that the optimal set, B∗, has more than one point and let x∗, x̃∗ ∈ B∗ be two distinct
solutions. Then we have optimal value f∗ = f(x∗) = f(x̃∗). For any α0 ∈ (0, 1), we construct
x0 = αx ∗ +(1 − α)x̃∗. From strict convexity we get that f(x0) < αf(x) + (1 − α)f(x̃) =
αf ∗+(1− α)f∗ = f∗. Which contradicts that x∗, x̃∗ ∈ B∗. Thus the proposition is true.

Definition 2.1.10 (Slater’s condition)
We say that the optimization problem

minimize
x

f0(x)

subject to fi(x) ≤ 0, i = 1, . . . , k

Ax = b, i = 1, . . . , s.

(2.6)

satisfies Slater’s condition if there exists x0 that is strictly feasible i.e.

fi(x0) < 0, i = 1, . . . , k and Ax0 = b

The following theorem holds (see [Boyd and Vandenberghe, 2004]).

Theorem 2.1.11 (Slater’s theorem) If optimization problem is convex and it satisfies Slater’s
condition then strong duality holds.

2.1.3 Proximal algorithm

Consider unconstrained optimization problem of the form

minimize
x

g(x) + h(x), (2.7)

where g is convex and differentiable and h is convex. If there exists efficient algorithm for
computing proximal operator function for h

proxth(y) := arg min
x

{
1

2t
‖y − x‖2

2 + h(x)

}
(2.8)

for each y ∈ Rp and t > 0, then the problem (2.7) can be solved using the following proximal
gradient algorithm.
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Suppose that in k step x(k) is the current guess. Then, guess x(k+1) is given by

x(k+1) = arg min
x

{
g(x(k)) + 〈∇g(x(k)), x− x(k)〉+

1

2t
‖x− x(k)‖2

2 + h(x)

}
(2.9)

(2.9) resembles our initial objective as first two terms are Taylor expansion of g, while third
one ensures that new estimate lies in proximity of the old one. It can be further reformulated
to:

x(k+1) = arg min
x

{
1

2t
‖x(k) − x− t∇g(x(k))‖2

2 + h(x)

}
Proof of convergence of algorithm 1 can be found in [Beck and Teboulle, 2009]. There are
however methods, that can speed up proximal gradient method even further.

Algorithm 1 Proximal gradient algorithm

Set x0. k = 0
while convergence criterion is not satisfied do
xk+1 := proxtkh(xk − tk∇g(xk))

end while

2.1.4 Fast proximal gradient method (FISTA)

Consider a convex optimization problem with composite objective

minimize
x

g(x) + h(x) (2.10)

where g is differentiable and h has inexpensive prox operator.

[Beck and Teboulle, 2009] noted that by choosing intermediate update point in algorithm 1
one can speed up convergence. They showed couple of examples including solving linear model
with `1 penalty (LASSO).

The following algorithm can be used to solve (2.10):

Algorithm 2 General form of Accelerated proximal gradient algorithm

Choose x0 = y0. θ0 = 1
for k = 0, 1, 2, . . . do
xk+1 := proxth(yk − tk∇g(yk)

θk+1 :=
1 +

√
1 + 4/θ2

k−1

2
yk+1 := xk+1 + θk+1[ 1

θk
− 1](xk+1 − xk)

end for

The proof of convergence of this algorithm can be found in [Beck and Teboulle, 2009]. As we
do not use this method, only compare to implementation based on it, we omit exact formulation
of the theorem.
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2.1.5 Alternating direction method of multipliers (ADMM)

In this subsection we follow [Boyd et al., 2011].
Consider a problem with the separable objective

minimize
x

f(x) + g(z)

subject to Ax+Bz = c
(2.11)

where x ∈ Rn and z ∈ Rm are variables and A ∈ Rp×n, B ∈ Rp×m, c ∈ Rp are given.
For such a problem we form an augmented Lagrangian with the penalty parameter µ

Lµ(x, z, y) = f(x) + g(z) + 〈y, Ax+Bz − c〉+
µ

2
‖Ax+Bz − c‖2

F

Algorithm sequentially optimizes over x and z, thus name alternating direction, and dual
variable y update using step size µ.

Algorithm 3 General form of ADMM algorithm

y0 ← ỹ. z0 ← z̃, k ← 1, µ← µ0 > 0
while convergence criterion is not satisfied do
xk+1 := arg minx L(x, zk, yk)
zk+1 := arg minz L(xk+1, z, yk)
yk+1 := yk + µ(Axk+1 +Bzk+1 − c)

end while

Scaled form

The augmented Lagrangian can be rewritten by combining linear and quadratic terms. Let us
define residual as r = Ax+Bz − c.

yT r +
µ

2
‖r‖2

2 =
µ

2
‖r +

1

µ
y‖2

2 −
1

2µ
‖y‖2 =

µ

2
‖r + u‖2

2 −
µ

2
‖u‖

where u = 1
µ
y is scaled dual variable. Updates in ADMM take then the following form

xk+1 := arg minxf(x) +
µ

2
‖Ax+Bzk − c+ uk‖2

2

zk+1 := arg min zg(z) +
µ

2
‖Axk+1 +Bz − c+ uk‖2

2

uk+1 :=uk + Axk+1 +Bzk+1 − c

Convergence

In chapter 3 of [Boyd et al., 2011] conditions for convergence and suggested stopping criteria
of the algorithm 3 are given.

Theorem 2.1.12 (Convergence for ADMM)
If

• extended-real-valued function f(·) and g(·) are closed, proper and convex
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• unaugmented Lagrangian L0 has a saddle point, that is there exists, not necessarily unique,
(x∗, z∗, y∗) such that for every (x, y, z) the following holds:

L(x∗, z∗, y) ≤ L(x∗, z∗, y∗) ≤ L(x, z, y∗)

then ADMM iterates converge in the following sense

• Residual convergence, rk = xk − yk → 0 as k → ∞. This condition means that iterates
approach feasibility

• Objective convergence to optimal value f(xk) + g(zk)→ p∗ = f(x∗) + g(z∗)

• Dual variable convergence yk → y∗. Here y∗ is dual optimal point.

[Boyd et al., 2011] also show optimality conditions from which they derive suggested stopping
criterion.

Definition 2.1.13 (Stopping criterion for ADMM)
Let us denote rk = xk − yk as primal feasibility and sk = µATB(zk+1 − zk) as dual feasibility.
Then stopping criterion is

|rk|2 ≤ εprimal and |sk|2 ≤ εdual

where εprimal > 0 and εdual > 0 are feasibility tolerance for primal and dual feasibility.

2.2 Probability results

Theorem 2.2.1 (Law of iterated logarithm) Let {Yn} be independent, identically distributed
random variables with means zero and unit variances. Let Sn = Y1 + · · · + Yn. Then almost
surely:

lim sup
n→∞

Sn√
2n log log n

= 1

Corollary 2.2.2 Under assumptions of theorem 2.2.1

∀C>1 almost surely ∃n0∀n≥n0

Sn
n
≤ C
√

2 log log n√
n

There are multiple generalizations of the law of iterated logarithm, most of which are focused
on the violation of independence. For us the following results is of more interest:

Theorem 2.2.3 (Theorem 7.2 from Petrov and Petrov [1995]) Let {Xn}n≥1 be independent
random variables sequence with EXn = 0, EX2

n = σ2
n < ∞. Let Bn =

∑n
i=1 σ

2
i , Sn =

∑n
i=1Xi

and δn = supx |P(Sn < x
√
Bn)− Φ(x)| where Φ(x) is a standard normal distribution function.

If

1. Bn →∞, as n→∞

2. Bn+1

Bn
→ 1 as n→∞

3. For some γ > 0 δn = O(logBn
−1−γ)

hold, then

lim sup
n→∞

Sn√
2Bn log logBn

= 1 a.s.
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2.3 Variable selection

One of the crucial challenges in the modern data analysis is increasing dimensionality of
the data. Its abundance causes computational and theoretical problems. Making statistical
inference about thousands of variables requires careful handling because of the problem of
multiple testing. A number of methods were introduced to deal with that and we shall give a
brief overview of those.

2.3.1 Correction for multiple testing

In statistical testing a classic p-value thresholds are often used, most common one being 0.05.
It means that test is allowed to reject null hypothesis 5 out of 100 times when it really holds.
Note that when we have 20 statistical tests then the expected number of rejected tests, when
all null hypothesis are true, is 1. So we expect to make a mistake.
In case of multiple hypothesis testing we use the following notation:

• m is the total number hypotheses tested

• m0 is the number of true null hypotheses

• m1 = m−m0 is the number of true alternative hypotheses

• V is the number of false positives (Type I error) (also called ”false discoveries”)

• S is the number of true positives (also called ”true discoveries”)

• T is the number of false negatives (Type II error)

• U is the number of true negatives

• R = V + S is the number of rejected null hypotheses (also called ”discoveries”, either
true or false)

Interaction between above quantities are visualized in table 2.1.

Table 2.1: Multiple hypothesis testing summary

Declared significant Declared non-significant Total
True null hypothesis V U m0

False null hypothesis S T m1 = m−m0

Total R m−R m

There are multiple ways to measure the error made by multiple testing procedures. We shall
focus on three of them. Before that we introduce one function that will make future notation
easier.

Definition 2.3.1 (False discovery proportion) False discovery proportion (FDP, also denoted
by Q) in the problem of multiple hypothesis testing is the ratio of false discoveries to all
discoveries

Q =

{
V
R

if R > 0

0 if R = 0

11
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First measure is a conservative one. It refers to the probability of making at least one mistake
of false discovery.

Definition 2.3.2 (Familiy wise error rate) Familiy wise error rate in the problem of multiple
hypothesis testing is the probability of making one or more false discoveries

P(V > 0)

Second is a weaker one. We require FWER to be controlled only under global null, that is all
null hypothesis are true.

Definition 2.3.3 (Weak FWER) Weak Familiy wise error rate in the problem of multiple
hypothesis testing is the probability of making one or more false discoveries when all null
hypothesis are true.

P(V > 0|m1 = 0)

Third was introduced in the seminal paper in 1995 by Benjamini and Hochberg [1995]. Rather
than concentrating on zero-one thinking (making - not making a false discovery), it looks at
the fraction on false discoveries to all discoveries made by a procedure.

Definition 2.3.4 (False discovery rate) False discovery rate in the problem of multiple hypothesis
testing is the expected ratio of false discoveries to all discoveries

FDR = E(Q)

When we perform multiple testing with hundreds of thousands of tests at once we expect
thousands of them to be rejected. Such problem is common in the field of genetics, i.e. when
marginal tests are performed on phenotype vs one SNP. In the reminder of this thesis we shall
refer to making a type 1 error as a false discovery. The question is can we limit number of
false discoveries. A widely used correction that guarantees FWER control was proposed by
Bonferroni [1936].

Definition 2.3.5 (Bonferroni correction for multiple testing)
Let H1, . . . , Hm and p1, . . . , pm corresponding p-values. Bonferroni correction rejects individual
hypothesis if their p values are smaller than pi ≤ α

m

Lemma 2.3.6 Bonferroni correction 2.3.5 controls FWER at level α

Proof

FWER = P
{
∪m0
i=1

(
pi ≤

α

m

)}
≤

m0∑
P
(
pi ≤

α

m

)
= m0

α

m
≤ α

There is less conservative procedure that holds, like Bonferroni correction, without any additional
assumptions.

Definition 2.3.7 (Holm-Bonferroni correction for multiple testing)
Let H1, . . . , Hm and p1, . . . , pm corresponding p-values. We sort p values getting p(1) ≤ p(2) ≤

· · · ≤ p(m). Let k be the minimal index for which p(k) >
α

m+ 1− k
. Then we reject hypothesis

H(1) . . . H(k−1) and do not reject H(k) . . . H(m)

12
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In paper Holm [1979] it is proved that:

Lemma 2.3.8 Holm-Bonferroni correction 2.3.7 controls FWER at level α.

Note, that Holm’s procedure does not compare all sorted p-values to adjusted thresholds. It
starts with first, smallest p-value and increases index step by step until it finds index that
violates the inequality. Contrary, one might find the first index that satisfies inequality starting
from largest p-value.

Definition 2.3.9 (Hochberg step-up correction for multiple testing)
Let H1, . . . , Hm and p1, . . . , pm corresponding p-values. We sort p values getting p(1) ≤ p(2) ≤

· · · ≤ p(m). Let k be the first index in order m,m− 1, . . . for which p(k) ≤
α

m+ 1− k
. Then we

reject hypothesis H(1) . . . H(k) and do not reject H(k+1) . . . H(m)

The following lemma holds for procedure 2.3.9 (for proof see [Hochberg, 1988]).

Lemma 2.3.10 If test statistics H1, . . . , Hm are independent then Hochberg step-up procedure
controls FWER.

This results can be further generalized for various types of positive dependency (see [Sarkar,
1998]).
We mention one more correction for multiple testing that, under certain assumptions, controls
FDR at a given level.

Definition 2.3.11 (Benjamini-Hochberg correction for multiple testing)
Let H1, . . . , Hm and p1, . . . , pm corresponding p-values. We sort p values getting p(1) ≤ p(2) ≤

· · · ≤ p(m). Let k be the largest index k for which p(k) ≤
k

m
α. Then we reject hypothesis

H(1) . . . H(k) and do not reject H(k+1) . . . H(m)

Theorem 2.3.12 (FDR control for independent test statistics) Benjamini and Hochberg
[1995] proved that under assumption that test statistics H1, . . . , Hm are independent, correction
2.3.11 controls FDR.

Recall that a set D is called increasing if x ∈ D and y ≥ x, imply that y ∈ D.

Definition 2.3.13 (Positive regression dependency on each one from a subset (PRDS))
We say that random vector X has property PRDS on indices subset I0 if For any increasing set
D, and for each i ∈ I0

P(X ∈ D|Xi = x) is nondecreasing in x.

Theorem 2.3.14 If the joint distribution of the test statistics is PRDS on the subset of test
statistics corresponding to true null hypotheses, the Benjamini Hochberg procedure controls the
FDR at level less than or equal to m0

m
α.

Proof can be found in [Benjamini and Yekutieli, 2001].
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2.3.2 Maximum likelihood

One of the classical statistical approaches is maximum likelihood. Assuming that data is drawn
from the model MΘ of unknown parameters Θ according to density function

y = fMΘ
(X) (2.12)

we estimate it, by maximizing density function over Θ, and which is then called likelihood
function

LX(Θ) = fMΘ
(X) (2.13)

We say that Θ̂ is maximum likelihood estimator if it maximizes

Θ̂ = arg max
Θ

LX(Θ)

Maximum likelihood estimators are well described in the literature [van der Vaart, 2000]. They
have a lot of interesting properties. First of all they are consistent, meaning that if data is
in fact drawn from the assumed distribution with parameter Θ0 then, under mild regularity
conditions (see [van der Vaart, 2000])

Θ̂ →
n→∞

Θ0

Moreover, under mild regularity conditions the asymptotic distribution of Θ̂ is normal with
covariance matrix being inverse of Fisher Information Matrix.
Despite all these properties and features that made ML very useful technique in classical
statistics, it proves to be inadequate to handle modern data analysis challenges. Specifically,
ML are not unique when the number of parameters p is larger than the number of observations
n. Also, in case when p is smaller but comparable to n, the variance of ML tends to be
very large, which leads to very poor behavior of related testing procedures for significance of
individual parameters in the model.
The tools of modern statistics modify MLE by including the penalty function, which stabilizes
the variance of resulting estimators. Particularly interesting are penalties which automatically
lead to eliminating some of the model parameters (i.e. make them equal to zero) and thus lead
to sparse models. Observe that since maximum likelihood estimators are normally distributed,
with probability 1 estimators are non-zero. If one builds a model based on thousands of
variables, then it is unreasonable to assume that all of them give significant input. Therefore
a lot of them should not be included in the model. In [Hastie et al., 2009] a term bet on
sparsity was coined. It basically says, that when dealing with high dimensional data on of the
following is true: either only a handful of variables are significant (therefore, solution is sparse)
or solution is not sparse in which case, we any kind of modeling is doomed to fail.

2.3.3 Bias variance trade-off

One of the most important concepts in the modern statistics is bias variance trade-off.
Assume that we want to predict y based on X and that

y = f(X) + ε (2.14)
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where f is some function and ε is independent normally distributed irreducible error. Let
us denote an estimator of f(X) by ˆf(X). Then expected squared prediction error can be
decomposed into:

E[(y − ˆf(X))2] = E[(f(X) + ε− ˆf(X))2]

= E[
(

(f(X)− E ˆf(X)) + (E ˆf(X)− ˆf(X)) + ε)
)2

]

independace and orthogonality
= E[(f(X)− E ˆf(X))2] + E[(E( ˆf(X)− ˆf(X))2] + Eε2

= f(X)− E ˆf(X))2︸ ︷︷ ︸
Squared bias

+E[(E( ˆf(X)− ˆf(X))2]︸ ︷︷ ︸
Estimator variance

+ Eε2︸︷︷︸
Irreducible Error

(2.15)

In the context of linear regression. The Gauss-Markov estimator minimizes prediction error
among all the estimator that are unbiased. However, one might define various biased estimators
with much smaller variance, and therefore with lower total expected prediction error. One of
the ways of introducing bias is introducing additional penalty on the level of complication
of function f . This technique is called regularization, and we shall cover it in the following
subsection.

2.3.4 Laplace Method for Integrals

In this section we shall cover in detail so called Laplace approximation. First we cover simplified
version, then full scale and we end with multivariate version. We follow [de Bruijn, 1970].

Theorem 2.3.15 Let us consider integral

F (t) =

∫ ∞
−∞

eth(x)dx

with h and F satisfying following assumptions

(a) h(x) has global maximum in 0 with h(0) = 0

(b) ∃b,c>0 such that h(x) ≤ −b for |x| > c

(c) F (t) should converge for some value of t. For simplicity let us assume that
∫
eh(x)dx <∞

(d) h′(x) and h′′(x) exist in some neighborhood of 0, and h′′(x) < 0 in that neighborhood

Then
F (t)

√
2π(−th′′(0))−1/2

→
t→∞

1 (2.16)

Proof
First let us observe that from (a) and (d) we have that h′(0) = 0. Furthermore we can actually
omit most of our integration range when t is large.

∀δ > 0 ∃ν(δ) > 0 such that h(x) ≤ −ν(δ) for x ∈ R \ (−δ, δ) (2.17)
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For δ > c statement (2.17) is true because of (b). For δ < c observe that because h is continuous
on (δ, c) it achieves its maximum and this maximum obviously equals less than 0.∫ ∞

δ

eth(x)dx =

∫ ∞
δ

e(t−1)h(x)eh(x)dx < e−(t−1)ν(δ)

∫ ∞
δ

eh(x)dx

Therefore ∫
R\(−δ,δ)

eth(x)dx < 2e−(t−1)ν(δ)

∫ ∞
−∞

eh(x)dx (2.18)

So
∫
R\(−δ,δ) e

th(x)dx = O(e−tα) where α = ν(δ) depends on δ, but not on t.

Next we shall estimate the remaining integral.
Consider φ(x) = h(x) − 1

2
x2h′′(0). Then φ(0) = φ′(0) = φ′′(0) = 0. Because of that

φ′(x)−φ′(0)
x

x→0−−→ 0. So φ′(x) = o(x) (x → 0). From mean value theorem we get φ(x) − φ(0) =
xφ′(θx) for some 0 < θ < 1. Therefore

φ(x) = xo(θx) = o(x2) (x→ 0) (2.19)

Therefore, for a given ε such that 0 < 3ε < |h′′(0)|, we can determine δ > 0 such that

|h(x)− 1

2
x2h′′(0)| ≤ εx2 , (−δ ≤ x ≤ δ) (2.20)

Consequently, we can bound integral from below and from above∫ δ

−δ
e1/2tx2(h′′(0)−2ε)dx <

∫ δ

−δ
eth(x)dx <

∫ δ

−δ
e1/2tx2(h′′(0)+2ε)dx (2.21)

All three above integrals differ from corresponding integrals over all axis by an amount
O(e−tα). For the central we get this from (2.18). For the left-hand side observe that:∫ ∞

δ

e1/2tx2(h′′(0)−2ε)dx =

∫ ∞
δ

e(t−1)1/2x2(h′′(0)−2ε)e1/2x2(h′′(0)−2ε)dx

< e−(t−1)1/2δ2(h′′(0)−2ε)

∫ ∞
δ

e1/2x2(h′′(0)−2ε)dx = O(e−tα)

The rightmost integral is then simple gamma function or if you prefer normal pdf without
scaling factor. Thus combining everything we got so far,∫ ∞

−∞
eth(x)dx <

√
π(−1

2
t(h′′(0) + 2ε))−1/2 +O(e−tα)

<
√

2π(−h′′(0)− 2ε)−1/2t−1/2 +O(e−tα)

<
√

2π(−h′′(0)− 3ε)−1/2t−1/2 (2.22)

The last inequality holds for sufficiently large t. Because ε can be set arbitrarily small, and
because we can similarly bound integral from below, we get∫∞

−∞ e
th(x)dx

√
2π(−th′′(0))−1/2

→
t→∞

1 (2.23)
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Corollary 2.3.16
We’ve assumed that global maximum of function h is in 0 with h(0) = 0. We can easily
extend theorem 2.3.15. Suppose we have function g(x) with maximum in x̂. and g′′(x) < 0 in
neighborhood of x̂ Then by substitution h(x− x̂) = g(x)− g(x̂) we get:∫ ∞

−∞
etg(x)dx =

∫ ∞
−∞

et(g(x̂)+h(x−x̂))dx =

∫ ∞
−∞

etg(x̂)

∫ ∞
−∞

eth(x−x̂)dx

≈ etg(x̂)
√

2π(−tg′′(x̂))−1/2

Integral of a posteriori

Laplace approximation can be used to compute posterior probabilities (see [Ghosh et al., 2007].

Theorem 2.3.17 Let

F (t) =

∫ ∞
−∞

g(x)eth(x)dx

Under assumptions from theorem 2.3.15 and

• g is twice differentiable around 0

• g is bounded supR g(x) = G <∞

• g is nonzero in 0 g(0) > 0

the following holds:
F (t)

√
2πg(0)(−h′′(0))−1/2t−1/2

→
t→∞

1 (2.24)

Proof
The bound is probably not required here. What we really want is, as in (2.18)∫

R\(−δ,δ)
g(x)eth(x)dx = O(e−tν(δ))

We follow proof of theorem 2.3.15.∫ ∞
δ

g(x)eth(x)dx =

∫ ∞
δ

e(t−1)h(x)g(x)eh(x)dx < e−(t−1)ν(δ)G

∫ ∞
δ

eh(x)dx (2.25)

For the second part of integral we use Taylor series of order two g(x) = g(0) + xg′(0) +
x2

2
g′′(0) + o(x2)

∫ δ

−δ
g(x)eth(x)dx <

∫ δ

−δ

(
g(0) + xg′(0) +

x2

2
g′′(0) + o(x2)

)
e1/2tx2(h′′(0)−2ε)dx

We can choose ε so that the following holds:∫ δ

−δ

(
g(0) + xg′(0) +

x2

2
g′′(0) + o(x2)

)
e1/2tx2(h′′(0)−2ε)dx

<

∫ δ

−δ

(
g(0) + xg′(0) + x2(

g′′(0)

2
+ ε)

)
e1/2tx2(h′′(0)−2ε)dx (2.26)
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We can split the above into three integrals∫ δ
−δ xg

′(0)e1/2tx2(h′′(0)−2ε)dx = 0 because of symmetry. To get the other two integrals, we need
to use substitution, that yields gamma integrals.∫ δ

−δ
x2(

g′′(0)

2
+ ε)e

1
2
tx2(h′′(0)−2ε)dx = (

g′′(0)

2
+ ε)

∫ δ

−δ
x2e

1
2
tx2(h′′(0)−2ε)

Here we can simply used the properties of normal pdf again.∫ δ

−δ
x2e

1
2
tx2(h′′(0)−2ε) =

√
(2π)σ · σ2 =

√
(2π)(−1

2
t(h′′(0)− 2ε))−3/2

Alternative is using substitution y = −1
2
t(h′′(0)− 2ε)x2. So dy = −t(h′′(0)− 2ε)xdx and

dy

−t(h′′(0)− 2ε)

√
−t(h′′(0)− 2ε)

y
= dx

(
g′′(0)

2
+ ε)

∫ δ

−δ
x2e

1
2
tx2(h′′(0)−2ε)

= (
g′′(0)

2
+ ε)

∫ δ2t(−h′′(0)+2ε)

0

y2

−1
2
t(h′′(0)− 2ε)

ey

√
−1

2
t(h′′(0)− 2ε)

y

1

−1
2
t(h′′(0)− 2ε)

dy

= t−3/2(
g′′(0)

2
+ ε)(−1

2
(h′′(0)− 2ε))−3/2

∫ δ2t(−h′′(0)+2ε)

0

y3/2eydy

< t−5/2(
g′′(0)

2
+ ε)(−1

2
(h′′(0)− 2ε))−5/2

∫ ∞
0

y3/2eydy

= t−3/2(
g′′(0)

2
+ ε)(−1

2
(h′′(0)− 2ε))−3/2Γ(

3

2
)

= O(t−
3
2 )

Combing this with results from section 2.3.4 we get:∫ ∞
−∞

g(x)eth(x)dx =

∫ δ

−∞
g(x)eth(x)dx+

∫ ∞
δ

g(x)eth(x)dx+

∫ δ

−δ
g(x)eth(x)dx

= e−(t−1)ν(δ)G

∫ ∞
δ

eh(x)dx+ e−(t−1)ν(δ)G

∫ δ

−∞
eh(x)dx+

∫ δ

−δ
g(x)eth(x)dx

< e−(t−1)ν(δ)G

∫ ∞
−∞

eh(x)dx+

∫ δ

−δ
g(x)eth(x)dx

= O(e−tα) +

∫ δ

−δ
g(x)eth(x)dx

=
√

2πg(0)(−h′′(0)− 2ε)−1/2t−1/2 +O(e−tα) +O(t−
3
2 )

For sufficiently large t, because ε was chosen arbitrary∫∞
−∞ g(x)eth(x)dx

√
2πg(0)(−h′′(0))−1/2t−1/2

→ 1

18



Chapter 2. Mathematical introduction 2.3. Variable selection

Multivariate Laplace approximation

As in every source it is said that multivariate case is the same as univariate with obvious
alterations we aim to write it down in rigorous way.

Theorem 2.3.18 Let us define a function

F (t) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

eth(x1,...,xn)dx1 . . . dxn (2.27)

=

∫
Rn
eth(x)dx (2.28)

We assume the following:

(a) h(x) = h(x1, . . . , hn) has global, unique maximum in 0, with h(0, . . . , 0) = 0

(b) ∂h(x)
∂xi

and ∂2h(x)
∂xi∂xj

exist and are continuous in some neighborhood of 0

(c) F (t) should converge for some value of t. For simplicity let us assume that it holds for
t = 1:

∫
eh(x)dx <∞

(d) h(x1, . . . , hn) = −1
2

∑n
i=1

∑n
j=1 ai,jxixj + o(x2

1 + · · ·+ x2
n) when x2

1 + · · ·+ x2
n → 0

(e) We require A = (ai,j)
n
i,j=1 to be positive definite

(f) ∃b,c>0 such that h(x) ≤ −b for ‖x‖ > c

Then
F (t)

√
2π

k
2 t−

k
2 |A|−1/2

→
t→∞

1 (2.29)

Proof First observe that because h has unique maximum we can separate h from 0 outside
any arbitrary neighbourhood of 0.

∀δ > 0 ∃ν(δ) such that h(x) ≤ −ν(δ) for x ∈ Rn \ B(δ) (2.30)

By B(δ) we mean an open ball centered in the origin with radius of δ. Argument is the same
as in proof of theorem 2.3.15 and uses ((f)).
Therefore, using ((c)) ∫

Rn\B(δ)

eth(x)dx =

∫
Rn\B(δ)

e(t−1)h(x)eh(x)dx

<

∫
Rn\B(δ)

e−(t−1)ν(δ)eh(x)dx

< e−(t−1)ν(δ)

∫
Rn
eh(x)dx = O(e−tα) (2.31)

From (e) all minors are positive, so we can choose ε such that 3ε < mini aii, and subsequently
we have that, for x ∈ B(δ), the following holds:

|h(x) +
1

2
xTAx| ≤ ε‖x‖2 , x ∈ B(δ) (2.32)
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Subsequently, for any ε > 0, we get∫
B(δ)

e−
1
2
t·xT (A+εI)xdx <

∫
B(δ)

eth(x)dx <

∫
B(δ)

e−
1
2
t·(xTAx−εxTx)dx <

∫
B(δ)

e−
1
2
t·xT (A−εI)xdx

(2.33)
To compute this integral observe that it is, up to scaling, probability density function of
multivariate normal distribution (2π)

k
2 |Σ|− 1

2 e−
1
2

(x−µ)TΣ−1(x−µ). Using (2.31) we get∫
Rn
e

1
2
t·xT (A−εI)xdx = (2π)

n
2 |t(A− εI)|−1/2 +O(e−tα) = (2π)

n
2 t−

n
2 |A− εI|−1/2 +O(e−tα) (2.34)

Thanks to the fact that k does not depend on t and that ε is arbitrarily small, for large t:∫
Rn e

th(x)dx

(2π)
n
2 t−

n
2 |A|−1/2

→ 1 (2.35)

Similarly one can get the same asymptotic lower bound.

2.3.5 Regularization

For simplicity in the remain of this chapter we shall consider the linear model. Please note that
this methodology is not limited to it, but it is much easier to follow.

y = Xβ + ε (2.36)

where y = (y1, y2, . . . , yn) is a vector of observations, X ∈ Mn×p is known design matrix, β
is unknown vector of parameters that we wish to estimate and ε is vector of errors. We assume
errors independent, normally distributed εi ∼ N(0, σ2).

Observe that log-likelihood function for model (2.36) is the following

−n
2

log(2π) +
1

2
log σ2 +

(y −Xβ)T (y −Xβ)

2σ2

Which brings the following MLE by computing derivative and setting it to zero.

β̂ = (XTX)−1XTy

σ̂2 =
1

n
(y −Xβ)T (y −Xβ)

As said before, MLE for this problem has good statistical properties as n tends to infinity.
However things get ugly when n ≈ p. When p > n then there are infinitely many solutions to
(2.36), as it involves computing pseudo-inverse of non-invertible matrix XTX.

In their paper [Hoerl and Kennard, 1970] noticed that it suffices to add a small number to the
diagonal of XTX to make it invertible and thus having unique and stable solution. Interestingly
this corresponds to two different formulation of the problem. One from optimization perspective
and the other one Bayesian.

One can add additional term to the log-likelihood and minimize so called penalized log-likelihood.
We shall omit here σ2 term, because optimization obviously can be split into two independent
parts. So for the sake of simplicity, we assume that σ2 is fixed.
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β̂rigde = arg min
β

(y −Xβ)T (y −Xβ)

2σ2︸ ︷︷ ︸
loglikelihood

+λβTβ︸ ︷︷ ︸
penalty

(2.37)

Which is basically a quadratic optimization problem with closed solution.

β̂rigde = (XTX + λI)−1XTy (2.38)

This is equivalent to constrained formulation

minimize
x,z

(y −Xβ)T (y −Xβ)

2σ2

subject to βTβ ≤ t

(2.39)

For some value t. There is a direct correspondence between λ and t, but not in a closed form.

Figure 2.1: Visualization of difference between `1 and `2 penalties. From book [Hastie et al.,
2009]

Observe that ridge regression is a biased method for optimization. However, its variance is
smaller than the one of MLE, and thus, for some set of values of the tuning parameter, its
mean squared error is smaller. There are still some limitations of ridge. Figure 2.1 is probably
a single most influential visualization in modern statistics. It gives a good intuition, that all
elements of ridge solution will be nonzero with probability 1. So even if one includes dummy
variable into the model, it will still be part of a model (though likely with small coefficient). In
the next subsections we shall look into the methods that overcome this limitations.

2.3.6 Akaike Information Criterion (AIC)

An alternative approach, Akaike Information Criterion, was proposed by [Akaike, 1975]. To
the likelihood function the following term was added
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β̂AIC = arg min
β

(y −Xβ)T (y −Xβ)

2σ2︸ ︷︷ ︸
loglikelihood

+ ‖β‖0︸︷︷︸
penalty

(2.40)

Observe that because penalty term is l0 norm, in optimal β some entries will be 0 i.e. they
will not be included in the model. AIC asymptotically with n minimizes Kullback–Leibler
divergence between the true distribution generating y and its estimator [Akaike, 1975]. So in
some way it is optimized with respect to the prediction error.

2.3.7 Bayesian Information Criterion (BIC)

One obvious modification of AIC is to alter penalty term. One such approach is famous Bayesian
Information Criterion (BIC) proposed in 70ties by Schwarz [1978].

β̂BIC = arg min
β

(y −Xβ)T (y −Xβ)

2σ2︸ ︷︷ ︸
loglikelihood

+
ln(n)

2
‖β‖0︸ ︷︷ ︸

penalty

(2.41)

This formula is in fact a result of rigorous Bayesian reasoning and we shall cover it in details.
Say we have a number of competing models {Mj}j=1,..., and data Y = (Y1, . . . , Yn). Then how
probable is the model given the data? We follow Bayes rule:

P (Mj|Y ) ∝ P (Y |Mj)P (Mj),

Where P (Mj) is prior probability for the model. We select model that maximizes the above.
Equivalently we may maximizes logs

logP (Mj|Y ) ∝ logP (Y |Mj) + logP (Mj),

The first term on the right hand side can be further expanded

P (Y |Mj) =

∫
Θj

p(Y |Mj, θj)πj(θj)dθj =

∫
Θj

L(θj)πj(θj)dθj,

where Θj is parameter space for model Mj, and L is likelihood function. For example, in normal
distribution Θ = (σ2, µ) = ((0,∞)× R)
Unfortunately in many cases that last integral is too difficult to compute, so we are left with
approximation. BIC is result of using Laplace approximation (see section 2.3.4), in which the
whole integral is approximated by integration in the neighborhood of the maximum likelihood
estimator θ̂.

log

∫
Θj

L(θj)πj(θj)dθj ≈ l(θ̂j)−
dj
2

log n,

where l = logL, dj is the dimension of parameter space of Mj.
Finally we pick model that maximizes

arg max
j

l(θ̂j)−
dj
2

log n+ logP (Mj) (2.42)

Usually uniform prior is assumed for all the models and value of BIC criterion for model Mj is
given by::
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BICMj
:= l(θ̂j)−

dj
2

log n

2.3.8 modified BIC

While both AIC and BIC work well when number of competing models is small, they have
however a major drawback: there is no closed form for solution for it. This is a big difference
compared to the case of ridge regression. Even worse, there is no tractable algorithm for finding
solution as it, in theory, requires fitting all the competing models. In our regressions example,
this means all possible variants of zero entries of β, which grows exponentially with the number
of parameters 2p. In practice greedy algorithms are used to get approximately optimal model.
One starts with either empty or full model, and at each step we add or remove variable, such
that the improvement in AIC/BIC is maximized. The procedure stops if no improvement of
the criterion can be obtained by adding/removing a single variable. This strategy is sometimes
extended a bit not to fall into local minimum, but in general, one follows this greedy approach.

The main non-computational and practical problem with AIC and BIC is that they do not
include the penalty for multiple testing. Therefore, when p is large they have a strong tendency
to overestimate the number of true regressors (see [Bogdan et al., 2008]). This also has inferior
influence on the prediction properties. Here it is important to note that while AIC gives
unbiased estimator of prediction error for any given model, the estimator of prediction error
for the model selected from a huge set of possible models by minimizing AIC will be strongly
biased downward. The reason is that the distribution of the minimum of many variables is
shifted to the left with respect to the distribution of any of these variables (unless they are all
perfectly correlated).

mBIC

In [Bogdan et al., 2004] an interesting extension of BIC was proposed that stem from Bayesian
perspective for sparse model selection found in the problem of finding quantitative trait loci
(QTL). It turns out, that when dealing with sparse model, that is when number of variables in
true model p̂ is small compared to the large number of all available variables p, BIC tends to
overestimate number p̂. It means that a lot of noise is admitted to the model. The reason for
that phenomenon is described in details in [Bogdan et al., 2004], but the main rationale is that,
in the context of sparse regression model, number of model of size k, that is having k non-zero
coefficients grows exponentially, namely

(
p
k

)
. Therefore, just by chance, larger models are more

likely to overfit to the data by admitting noise. Solution to this problem is selecting different
prior in 2.42 i.e. the one that takes into account number of variables. More specifically,
following solution proposed by [George and McCulloch, 1993], [Bogdan et al., 2004] choose
binomial distribution with fixed hyperparameter for the mean. The connection between this
hyperparameter and the expected number of variables in the model is later established as well
as the bound for the type I error (choosing non-null model, when all variables are noise).

Although this extension of BIC enhanced analysis of QTL, it still had some practical drawbacks.
One most prominent is that method is, like regular BIC, intractable and requires using some
kind of heuristics on which model we want to compare.
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2.3.9 Least absolute shrinkage and selection operator (LASSO)

In the section 2.1 we discussed basic ideas in the topic of Convex Optimization. In contrast to
many other techniques in optimization it’s main feature is that it allows to solve a considerable
variety of optimization problems using similar techniques. These solutions are exact, which
makes it different from heuristics like greedy algorithms, genetic algorithms etc. Although
some of them require significantly more computational power than problems for which simple
derivative can be computed, the advent of stronger and cheaper computers in the 1990 drove
more interest in Convex Optimization.

The best known example of using convex optimization techniques in statistics is by far
LASSO. In his seminal paper [Tibshirani, 1996] proposed convex relaxation of l0 penalty term
in BIC.

Definition 2.3.19 For given value vector y and plan matrix X in the regression problem, we
call lasso estimator βlasso of vector β a solution to the following optimization problem:

maximize
β

(y −Xβ)T (y −Xβ)

2σ2

subject to
∑
|βj| < t

(2.43)

for some positive number t.

Transforming problem ( 2.43) through the Lagrange dual form one can obtain formulation that
is similar to regularization methods introduced in previous sections.

Lemma 2.3.20 Lasso problem can be reformulated as unconstrained form

minimize
β

(y −Xβ)T (y −Xβ)

2σ2
+ λ0

∑
|βj| (2.44)

where there is one to one correspondence between λ0 and t, for which there is however no closed
form.

Comparing (2.41) with (2.44) one can see that the difference is only in the penalty term. Lasso
problem is convex relaxation of discrete optimization problem BIC (caused by using discrete
l0 norm). This resemblance causes Lasso to have multiple properties. First of all, for certain
conditions and the right choice of λ0 it is asymptotically consistent [Zhao and Yu, 2006]. Lasso,
like BIC, also produces sparse solutions. The rationale behind it can best understood by
analyzing figure (??).

Recall that ridge regression estimator can be viewed as Bayesian estimator for linear model
in which normal prior on vector β ∼ N (0, λI) is assumed. It turns out that similar formulation
is possible for Lasso.

Lemma 2.3.21 Assume independent Laplace prior on every element βi ∼ Laplace(ν) in the
classic regression model (2.36). Then mode of the posterior distribution Bayesian is equivalent
to lasso.

Proof
Let us write down the model from the lemma
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y ∼ Xβ + ε

where

ε ∼ N (0, σ2I)

βi ∼ Laplace(ν)

(2.45)

Then joint log-likelihood that we want to maximize is:

− n

2
log(2π) +

1

2
log σ2 − (y −Xβ)T (y −Xβ)

2σ2
+ p log(2ν)− ν

∑
|βj| (2.46)

When we exclude terms that do not depend on β we get:

− (y −Xβ)T (y −Xβ)

2σ2
− ν

∑
|βj| (2.47)

Which is exactly the unconstrained Lasso problem.

2.3.10 Sorted L-One Penalized Estimation (SLOPE)

Lasso is not the only convex relaxation of BIC. One frequently used is combination of l1 and l2
penalty terms called elastic net. We shall however focus on a one that involves completely new
norm called sorted l1 norm, Jλ.

Definition 2.3.22 Function Jλ : Rp → R for nonnegative, nonincreasing sequence λ1 ≥ λ2 ≥
... ≥ λp ≥ 0 is defined as

Jλ(β) =

p∑
i=1

λi|β(i)| (2.48)

where β(i) is the i-th biggest element in vector β in terms of absolute value.

Proposition 2.3.23 Jλ is a norm

Proof First let us prove that Jλ satisfies triangle inequality

Jλ(β1 + β2) =

p∑
i=1

λi|β1 + β2|(i)

≤
p∑

i∗=1

λi|β1|(i∗) + |β2|(i∗)

=

p∑
i=1

λi|β1(i∗)|+
p∑
i=1

λi|β2(i∗)|

≤
p∑
i=1

λi|β1(i)|+
p∑
i=1

λi|β2(i)|

By i∗ we mean the order of the vector |β1 + β2|. The last inequality comes from the fact that
if there are two non negative, decreasing sequences a and b then:

∑p
i=1 aibi ≥

∑p
i=1 aibπ(i) for

every permutation π.
Absolutely homogeneity and point-separation come straight from the definition.
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Jλ is called sorted l1 norm (SL1, a.k.a. OWL, ordered weighted `1). It will be a crucial
element of Graphical SLOPE method we shall introduce in the subsequent chapter.

Proposition 2.3.24 The dual norm to Jλ is given by JDλ (x) := max
{
|x|(1)

λ1
, . . . ,

∑p
i=1 |x|(i)∑p
i=1 λi

}
Definition 2.3.25 SLOPE [Bogdan et al., 2015a] is the solution to the following convex optimization
problem

minimize
β

(y −Xβ)T (y −Xβ) + σJλ(βj) (2.49)

Definition 2.3.26 By Benjamini-Hochberg λ sequence we denote

λBH(i) := Φ−1(1− αi), αi = α
i

2p
,

Theorem 2.3.27 (FDR control) In the linear model with orthogonal design X and ε ∼
N (0, σ2In), the procedure

rejecting hypotheses for which βj 6= 0 has an FDR obeying

FDR = E

[
V

R ∨ 1

]
≤ α

p0

p
.

In [Bogdan et al., 2015a] a λ sequence is shown that leads to the control of FDR under
assumption of orthogonality of X.
An algorithm for solving this problem was also introduced in the paper. Current implementation
in R language (CRAN packge SLOPE ) is based on FISTA method. This implementation
included efficient algorithm for computing prox function (2.8). In section 5 we introduce an
alternative implementation based on ADMM and show its superior computational properties
for some types of design matrices X.

2.4 Dimension reduction

2.4.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [Pearson, 1901] is a dimensionality reduction technique
that is widely used in practice. Its main application is in exploratory data analysis, where data
is projected onto a small number of orthogonal directions (usually two dimensions). Thanks to
the PCA researcher can get intuition on the data structure conjecture a hypothesis, that would
be further investigated. Subsequent principal components refer to directions that explain less
and less variability of the data. Therefore it seems natural to assume that some first components
in PCA are signal, represent the values of interest, while remaining components as noise that
could be discarded. In exploratory data analysis, it is often redundant to have a tool for precise
choice of the number of non-noise components. However, there are other applications of PCA
where precise distuingish between signal and noise is important. For example in projective
clustering (see e.g. [Agarwal and Mustafa, 2004]), where data is clustered along various linear
subspaces, an incorrect estimation of subspaces dimensions may lead to the choice of wrong
number of clusters and incorrect segmentation. Another example is an important problem of
missing values in PCA, where inaccurate estimation of the number of components may lead to
overfitting (see [Josse et al., 2009], [Ilin et al., 2010], [Josse et al., 2011]).
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2.4.2 Selecting the number of principal components

In Jolliffe [2002] three types of methods for choosing the number of factors are distinguished.
First are ad-hoc rules such as a scree test [D’agostino and Russell, 2005] or a rule of thumb
that chooses the smallest number of factors which jointly explain e.g. 90% of variance of data.
Although these methods are usually fast and easy to implement, they are difficult to use in
automatic way, since in high-dimensional data it is common that few first components explain
a lot of variance even if data is entirely random [Husson et al., 2010].
Methods of the second type include techniques that consider the problem in a more systematic
way, but do not rely on any probabilistic assumptions. Those are for example bootstrap and
permutation methods (see [Jackson, 1993]) or cross-validation (see [Owen and Perry, 2009],
[Josse and Husson, 2012]).
Finally there exists a group of methods based on specific probabilistic models. In the next
chapter we shall focus on unifying a couple of different approaches.
To formally define our model, let us start with reformulating (2.55) as a model for either rows
or columns of the matrix X. We shall use notation xi· and x·j respectively.

xi· − µi· =
k∑
l=1

ti,l w·l + εi· = ti·WT + εi·, i = 1, . . . , n, ε1·, . . . , εn· are i.i.d. N (0, Ip),

x·j − µ·j =
k∑
l=1

wj,l t·l + ε·j = TwTj· + ε·j, j = 1, . . . , p, ε·1, . . . , ε·p are i.i.d. N (0, In).

(2.50)

Let us focus here on the Bayesian estimation of number of components k. Idea is to, given
data, select model that yields highest probability. This approach is called maximum a posteriori
(MAP) rule.

For the simplicity of computations, we maximize the logarithm of the posterior probability.
In the most general form it is of the form:

log(P (k|X)) = log(P (X|k)) + log(P (k)) + C(X) (2.51)

= log

(∫
Θ

p(X|θ) πk(θ) dθ
)

+ log(P (k)) + C(X),

where P (k) is the prior distribution of k concentrated on the set {1, . . . ,min(n, p)}, πk(θ) is a
prior distribution on the model parameters given k, and C(X) is a scaling factor that does not
depend on k.
In terms of model (2.55), θ = (µ,W,T, σ) ∈ Θ, and P (X|k) takes the following form:

log(P (X|k)) = log

∫
Θ

p(X|µ,W,T, σ) πM(µ,W,T, σ) dµ dW dT dσ. (2.52)

2.4.3 Probabilistic model for PCA

Let X = [xij]n×p be high-dimensional data, where n is the number of observations and p is the
number of variables. Consider the fixed effect model for PCA:

X− µn×p = M + E, (2.53)
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where µ is of rank one, M is assumed to be of low rank k ≤ min(n, p)
and E = [εi,j]n×p is a matrix of i.i.d. errors, εi,j ∼ N (0, σ2).
Equivalently, we may use the singular value decomposition (SVD) of M and write (2.53) as

X− µn×p = PLQT + E, (2.54)

where PTP = Ik×k, QTQ = Ik×k and L is a diagonal matrix with the singular values of M, or
use the fixed factor analysis representation as in Caussinus [1986]:

X− µn×p = TWT + E, (2.55)

where T = [ti,l]n×k is a matrix whose columns contain factors spanning the data, and W =
[wi,l]p×k is a matrix of coefficients.
Given the number of components k, maximum likelihood estimators for the parameters in
model (2.53) are obtained by performing SVD of X − µ truncated at the order k (see for
example [Caussinus, 1986], [Allen et al., 2014]).

2.4.4 Probabilistic PCA - maximum likelihood estimator

In [Tipping and Bishop, 1999a] a fixed effect model was considered that can be seen as a special
case of (2.55) with:

V = σ2Id

w ∼ N (0, Ik)

and µn×p having all rows equal µ. Then we can write for every row of X

p(xi|T,m, v) ∼ N (µ,TTT + σ2I)

Theorem 2.4.1 Maximum likelihood estimators for the model (2.4.4) are given by:

µ̂ =
1

n
xi

T̂ = U(Λk − vIk)1/2R

σ̂2 =

∑d
j=k+1 λj

d− k

Proof Here we follow mostly [Tipping and Bishop, 1999a]. Some parts missing from this paper
are treated with more details.
From our model for one row (2.4.4) of whole dataset (consisting of n variables).

p(X|T,m, σ2) = Πip(xi|T,m, σ2)

= (2π)−nd/2|TTT + σ2I|−n/2 exp(−1

2
tr((TTT + σ2I)−1S)) (2.56)

S =
∑
i

(xi − µ)(xi − µ)T
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Obviously,

µ̂ =
1

n
xi (2.57)

From [Tipping and Bishop, 1999a] we have formula for maximum-likelihood estimator of T.

T̂ = U(Λk − σ2Ik)
1/2R (2.58)

where U contains k top eigenvectors of vS/n matrix, Λk are corresponding eigenvalues and R
is an arbitrary rotation matrix.
To derive this formula we analyze logarithm of 3.6.

− nd/2 log(2π)− n

2
log |TTT + σ2I| − 1

2
Tr((TTT + σ2I)−1S) (2.59)

To compute derivative of (2.59) with respect to H we use rules described in [Minka, December
2000]. To make derivation more clear we use notation C = TTT + σ2I. Observe that both C
and S are symmetric matrices.

∂ log |C|
∂H

= Tr(C−1 ∂C

∂H
)

= Tr(C−1∂HH
T

∂H
)

= Tr(C−1(
∂H

∂H
HT +H(

∂H

∂H
)T ))

= Tr(HTC−1∂H

∂H
) + Tr(C−1H

∂H

∂H

T

)

= 2HTC−1 (2.60)

Here we have derivative of other part of log-likelihood in slightly different (abbreviated) notation.

dTr(C−1S) = Tr(dC−1S) = −Tr(C−1dCC−1S)

= −Tr(C−1d(HHT )C−1S)

= −Tr(C−1(dHHT +HdHT )C−1S)

= −Tr(HTC−1SC−1dH)− Tr(C−1SC−1HdHT )

= −HTC−1SC−1 −HTC−1SC−1

= −2HTC−1SC−1 (2.61)

From that we get a condition for stationary points

n(C−1T− C−1SC−1T) = 0 (2.62)

So we get
T = SC−1T = 0 (2.63)

Here one needs to write T in terms of its SVD decomposition as shown in [Tipping and Bishop,
1999a]. Briefly, a stationary point is any approximation by k eigenvalues. From likelihood we
get that taking actually largest eigenvalues maximizes likelihood. We can even compute the
difference between the global maximum and second local maximum. This is actually important
for Laplace approximation.
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Now we move to ML estimate for v.

p(X|H = T̂, µ = µ̂, σ2) = (2π)−nd/2|T̂T̂T + σ2I|−n/2 exp(−1

2
Tr((T̂T̂T + σ2I)−1S)) (2.64)

Let us consider first

T̂T̂T + σ2I = U(Λk − σ2Ik)
1/2R(U(Λk − σ2Ik)

1/2R)T + σ2I =

= U(Λk − σ2Ik)
1/2RRT (Λk − σ2(Ik)

1/2))TUT + σ2I =

= U(Λk − σ2Ik)U
T + σ2Id (2.65)

In 3.5 we use the fact that R is orthogonal square matrix.
To compute determinant we use Sylvester’s determinant theorem.

|U(Λk − σ2Ik)U
T + σ2Id| = |σ2Id||Ik + (Λk − σ2Ik)U

T 1

σ2
IdU|

= (σ2)d|Ik + (Λk − σ2Ik)
1

σ2
UTU|

= (σ2)d|Ik + (Λk/σ
2 − Ik)Ik| (2.66)

= (σ2)d|Λk/σ
2|

= (σ2)dΠk
j=1λj(σ

2)−k

= Πk
j=1λj(σ

2)d−k (2.67)

In 2.66 we use the fact that U is orthogonal matrix.
Similarly we consider

Tr((T̂T̂T + σ2I)−1S) = Tr((U(Λk − σ2Ik)
1/2R(U(Λk − σ2Ik)

1/2R)T + σ2I)−1S)

= Tr((U(Λk − σ2Ik)U
T + σ2Id)

−1S) (2.68)

Now suppose S = nUdΛRd and A - square diagonal matrix with upper left block equal (Λk−vIk)

Tr((U(Λk − σ2Ik)U
T + σ2Id)

−1S)

= Tr((UdAUT
d + Udσ

2IdU
T
d )−1nUdΛRd)

= Tr((UdBUT
d )−1nUdΛRd)

= nTr((U−1
d B−1U−1

d UdΛRd)

= nTr((UdB
−1ΛRd) (2.69)

Observe that since diagonal of B−1Λ are eigenvalues of matrix UdB
−1ΛRd then trace equals

n · (k +
d∑

j=k+1

λj
σ2

) (2.70)

This gives us a formula for a likelihood

p(X|H = T̂, µ = µ̂, σ2) = (2π)−nd/2
(
Πk
j=1λj(σ

2)d−k
)−n/2

exp(−1

2
n · (k +

d∑
j=k+1

λj
σ2

))

= (2π)−nd/2
(
Πk
j=1λj

)−n/2
(σ2)−n(d−k)/2 exp(−nk

2
) exp(

n

2σ2

d∑
j=k+1

λj)

(2.71)
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From this we shall compute ml estimator for noise v. Taking, again, log-likelihood

− nd/2 log(2π)− n

2

k∑
j=1

log(λj)−
n(d− k)

2
log(σ2)− nk

2
− n

2σ2

d∑
j=k+1

λj (2.72)

Taking derivative wrt v yields

(−n(d− k)

2
log(σ2)− n

2σ2

d∑
j=k+1

λj)
′ = 0

− (d− k)

σ2
+

∑d
j=k+1 λj

(σ2)2
= 0

d∑
j=k+1

λj = σ2(d− k)

σ̂2 =

∑d
j=k+1 λj

d− k
(2.73)

In the paper [Tipping and Bishop, 1999a] no method for selecting number of PCs. Several
criteria including BIC, were proposed [Minka, 2000].

2.4.5 Full Bayesian approach

There exist several Bayesian methods for estimating the number of principal components in
the PCA model. One of them was proposed in Bishop [1999a], who used the following priors
in model (2.55):

ti· ∼ N (0, I),

wj· ∼ N (0,
1

αj
I),

αj ∼ Γ(aα, bα), (2.74)

1

σ2
∼ Γ(cσ, dσ),

where aα, bα, cσ, dσ are model hyperparameters. The rows of µ were estimated by x̄ = (x·1, . . . ,x·p),
where x·j = 1

n

∑n
i=1 xij.

Bishop [1999a] introduces non-discrete “model selection” for PCA, by means of continuous
parameters, that control the variability of the columns of W. More specifically, a large value
of αj effectively “switches off” wj·. Bishop [1999a] proposes three computational methods for
marginalizing over the posterior on W, including, among others, Markov Chain Monte Carlo. In
a follow up paper, Bishop [1999b] recommends the variational approach, which proves to be the
most efficient. This idea was further pursued by Ilin et al. [2010], who propose a fast algorithm
for variational Bayesian PCA (VBPCA), which however does not enable direct estimation of
the number of PCs. In fact, Ilin et al. [2010] note, in the context of missing values, that the
quality of the reconstructed matrix depends on estimating the number of PCs beforehand, and
they suggest using methods based on the Laplace approximation from Minka [2000] for this
task. The Variational Bayes approach was also used in Nakajima et al. [2015], who propose
a numerical algorithm for estimating the number of PCs. This algorithm is designed for the
asymptotic regime when p and n go to infinity at the same rate and under this setup it turns out
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Chapter 2. Mathematical introduction 2.5. Subspace clustering

to be suboptimal compared to the competitive method of Hoyle [2008], based on an extended
version of the Laplace approximation.

Another Bayesian approach was proposed by Hoff [2007], who considered the representation (2.54)
with µ = 0 and the following priors imposed on the components of SVD:

P ∼ uniform(Sk×n),

Q ∼ uniform(Sk×p),
εi· ∼ N (0, 1/φ),

li,i ∼ N (`, 1/ψ),

` ∼ N (l0, v
2
0), (2.75)

ψ ∼ Γ(η0/2, η0τ
2
0 /2),

φ ∼ Γ(ν0/2, ν0σ
2
0/2),

where uniform(Sk×n) denotes the uniform distribution on the Stiefel manifold of orthogonal
matrices [Chikuse, 2003], li,i are elements of the diagonal matrix L and (l0, v

2
0), (η0, τ0), (ν0, σ0)

are hyper-parameters. To estimate the number of principal components, Hoff [2007] considers
the model with k = p and uses the prior on li,i specified in (2.75) as a continuous component
in the spike and slab prior, with a positive mass at 0. The posterior distributions of the
parameters are computed by MCMC. The software provided by Hoff [2007] requires n ≥ p;
however, because of the symmetry in the model (2.75), when p > n one may transpose the
data and then use the method. Due to the complexity of MCMC, implementation is rather
slow and does not scale very well. Because even for moderately sized matrices (i.e. 1000×100)
generating a Markov chain of length 1000 takes more than two hours, we decided not to include
this method in the simulation study.

2.5 Subspace clustering

Subspace clustering problem comes from the field of computer vision. Such data sets contains
huge number of variables. Since computer visions models operate on limited number of parameters
related to appearance, geometry and dynamics of a scene, many researchers developed methods
for finding a low-dimensional representation of a high-dimensional data set. Since in this case
data naturally comes from multiple subspaces (motion different objects in a movie). This need
resulted in multiple papers with methods for performing subspace clustering.

We define subspace clustering following [Vidal, 2011]. Let X ∈ Rn×p be our data set. We
assume that it is drawn from a union of K affine subspaces S1, . . . SK of unknown dimensions
k1, . . . kK respectively.

Si = {x ∈ Rp : x = µi + Uiy, y ∈ Rki}

The goal of subspace clustering is finding number of subspaces K, their dimensions {ki}, points
µi, subspace bases Ui and segmentation of data points. We shall sometimes refer to subspaces
as clusters (they ’bind’ variables).

An example of subspace clustering with p = 3 and K = 4 can be seen in figure 2.2.

There are multiple methods for solving this problem, their formulation does not necessarily
include clearly defined probabilistic model. Significant group is based on spectral clustering
[Elhamifar and Vidal, 2009], [Vidal and Favaro, 2014], [Liu et al., 2013]. Others are iterative
methods that aim at optimizing some goodness of fit criterion [Agarwal and Mustafa, 2004]
[Timmerman et al., 2013] [Chavent et al., 2012] [Vigneau and Qannari, 2003]. There are however
several papers that define statistical model. Among them MPPCA by [Tipping and Bishop,
1999a] (mentioned in section 2.4.4) and [Soltanolkotabi et al., 2013].
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Figure 2.2: Example of data in subspace clustering problem. From paper [Soltanolkotabi et al.,
2013]

2.5.1 Methods based on spectral clustering

In the simulation study we shall compare our new method to two based on spectral clustering
(Luxburg [2007]). These methods exploit the notion of a similarity matrix. Let X = (x1, . . . , xp)
be the data set. Clustering is not done directly on data X. In general, spectral clustering
methods consist of several steps.

• We define similarity matrix A = (aij)
n
i,j=1, where aij stands for the similarity between xi

and xj. This could be for example based on correlations.

• Then based on A, we construct graph G = (V − vertices, E − edges) with vertices
corresponding to columns of X. We also construct adjacency matrix W , which gives
weights to the edges of the graph.

• Clustering is performed on this adjacency matrix. We look for a partition of a graph such
that the edges within one group have large weights and edges between two groups have
small weights.

We define D as a diagonal matrix such that Dii =
∑p

j=1wij

We define Laplacian matrix L as some function of D and W (for example check Ng
et al. [2001])

• Now we store the k (number of clusters) eigenvectors of L, corresponding to k largest
eigenvalues, in Uk = (u1, . . . , uk) as columns. In the simplest version of the algorithm
rows of matrix Uk: r1, . . . , rn are grouped into clusters C1, . . . , Ck and desired clustering
is A1, . . . , Ak where Ai = {j|rj ∈ Ci}. For details check Luxburg [2007] and Ng et al.
[2001].

Sparse subspace clustering (SSC) from Elhamifar and Vidal [2009] uses the spectral clustering
method from Ng et al. [2001]. It is based on the assumption that data comes from the union
of subspaces. The idea is that such data is self expressive. This means that for every point
in the data set Y = (y1, . . . yn), there exists sparse vector ci, such that yi = Y ci + zi, where
Z = (z1, . . . , zn) denotes the noise matrix. The main observation (in noiseless case) is that there
exists such a sparse solution ci that data points corresponding to its non-zero coordinates lie
in the same subspace as yi. So the first part of SSC is formulated as the optimization problem

Find min
C,Z

(
||C||1 +

λ

2
||Z||2F

)
s.t Y = Y C + Z and Cii = 0 for i = 1, . . . , n
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where λ is a tuning parameter and || ||F is the Frobenius norm (square root of the sum of
squared eigenvalues). After this step spectral clustering is performed using adjacency matrix
W = abs(C) + abs(CT ) where abs(C) denotes the result of taking element-wise the absolute
value.

Low-rank subspace clustering (LRSC) is a similar method but we formulate the optimization
problem differently.

Find min
A,C,Z

(
||C||∗ +

τ

2
||A− AC||2F +

λ

2
||Z||2F

)
s.t Y = A+ Z and C = CT

which is a convex relaxation of

Find min
A,C,Z

(
||C||∗ +

λ

2
||Z||2F

)
s.t Y = A+ Z, A = AC and C = CT

where || ||∗ denotes the nuclear norm (the sum of the eigenvalues). Such formulation causes the
matrix C (which is later used in spectral clustering as adjacency) to be low rank and allows
this problem to have closed solution which is shown in Vidal and Favaro [2014]. Due to this
property, LRSC is not computationally complex.

2.6 Gaussian Graphical Models

Graphical model is a probabilistic model represented as a graph in which random variables are
vertices V and their dependency structure is given by edges E. There are many ways to measure
this dependency, the most straightforward being correlation, but also partial correlation or
conditional independence.

The topic of graphical models is very wide, and we shall focus only on one specific type of
model called Gauss-Markov Random Field and one measure of dependency we shall focus on
partial correlation.

Definition 2.6.1 Let X and Y be random variables and Z random vector. We define partial
correlation between X and Y given Z by:

ρ(X, Y |Z) := ρ(εX , εY ), (2.76)

where εX = X − πZ(X) and εY = Y − πZ(Y ) are residuals from linear regression on the linear
subspace spanned by Z.

We want to estimate partial correlation matrix R

Lemma 2.6.2 Partial correlation matrix is given by

Ri,j :=
− Ωi,j√
Ωi,iΩj,j

, (2.77)

where Ω = Σ−1 is precision matrix, inverse covariance matrix.

We are covering just Gaussian graphical models, which is a very special case. In particular the
following theorem holds (for proof see e.g. [Lauritzen, 1996].

Theorem 2.6.3 Let X = (X1, . . . Xp) ∼ N (µ,Σ) and Θ−1 = Σ. Then Xi and Xj and
conditionally independent if and only if Θi,j = 0

From the theorem above, we know that for Gaussian graphical model, no correlation means
independence.
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2.6.1 Likelihood function

Let vertices of the graph x = (x1, . . . , xp) follow zero-mean multivariate Gaussian with covariance
matrix Σ, x ∼ N (µ,Σ). Then, edges are given by non-zero elements of inverse covariance matrix
Θ = Sigma−1. We assume non-degenerate case when Σ is invertible matrix.

For data X = (x1, ...,xn log-likelihood l(X,Θ) takes the form

l(X,Θ) =
1

n

n∑
i=1

log lΘ(xi) (2.78)

=
1

n

n∑
i=1

1

2
log det[Θ/2π]− 1

2
xTi Θxi

=
1

2n

n∑
i=1

log det Θ− n log 2π − xTi Θxi

=
1

2
log det Θ− n

2
log 2π − 1

2n

n∑
i=1

Tr
(
−xTi xiΘ

)
=

1

2
log det Θ− n

2
log 2π − 1

2n

n∑
i=1

−Tr
(
xix

T
i Θ
)

=
1

2
log det Θ− n

2
log 2π − 1

2
Tr (SΘ) ,

where S is sample covariance matrix given by 1
n

∑n
i=1 xix

T
i .

Up to a constant, log-likelihood function is equal to

l(X,Θ) = log det Θ− Tr (SΘ) . (2.79)

Considering above as optimization problem, obserce that objective function (??) is strictly

concave (see ?) so maximum must be unique, and defines the precision matrix MLE Θ̂ML.
Because for this problem general regularity conditions hold, MLE converges to the true parameter
Θ as n goes to infinity. This leads to the idea, that finding Gaussian graphical model could
consist on thresholding on entries of Θ̂ML.

In fact, the most straightforward way to test whether ri,j = 0 is using plug-in estimators.

r̂ij =
− Ω̂i,j√
Ω̂i,iΩ̂j,j

, (2.80)

where Ω̂ = S−1, inverse of sample covariance matrix.
It can be done using either bootstrap or using normal approximation.

Zi,j =
1

2
log

(
1 + ri,j

1− ri,j

)
∼ N

(
θi,j,

1

n− p− 5

)
(2.81)

However, especially in practice, the number of nodes p may be comparable to, or larger than,
the sample size n. It is obvious that when number of variables is higher then the number of
samples, sample covariance matrix becomes not invertible, MLE estimator is no longer unique
and no testing based on (2.81) is possible. Furthermore, variance of estimators is very high
when p and n are comparable. Therefore idea is to add some kind or regularization.
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The most basic idea is to adjust S matrix in Σ̂ by shrinking off-diagonal elements of S and
thus making it invertible. Specifically ,

Ω̂ = ((1− ε)S + εD)−1 ,

where Dii = Sii.
One can choose ε so that estimator risk is minimized [Ledoit and Wolf, 2004]. Testing is done

using bootstrap. Please note the idea behind this approach is very similar to ridge regression
in which we can in fact also use bootstrap to test significance of variables. In the chapter on
Graphical SLOPE we shall give description of other method that uses l1 penalty for the sparse
estimation of the matrix Θ rather that testing each entry of precision matrix separately.

2.6.2 Connectivity components

Definition 2.6.4 We say that Ck ⊂ V is a connectivity component of node xk if it contains
all vertices connected to xk by some chain of edges

Note that when vertex xj is not in the component Ck, then variables xj and xk are independent.
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3 Estimating number of Principal
Components

Overview

In this chapter we introduce a novel approach to choosing number of principal components.
PEnalized SEmi-integrated Likelihood (PESEL) [Sobczyk et al., 2017a] can be seen as a kind of
compromise between fixed effect and full Bayesian models. It is an extension of papers described
in section 2.4.2. We follow MAP rule (2.51) but instead of assuming specific prior distributions
and performing exact calculation like in Hoff [2007], we approximate the integral in (2.52)
using Laplace approximation (2.3.4). The rational behind this approach is that full Bayesian
methods require exact computation of posterior, which results in heavy computations and need
making very specific assumptions about prior distributions. We on the other hand minimize
number of made assumptions to minimum, which makes our method robust. In section 3.2 we
prove that PESEL is consistent, under few assumptions stated in that section. Furthermore, we
created an efficient implementation in R package pesel [Sobczyk et al., 2018]. We extensively
tested properties and performance of PESEL in the simulations study. It proved to be a robust
methods compared to other classical and recent approaches. This chapter is based on the paper
Sobczyk et al. [2017a].

3.1 PEnalized SEmi-integrated Likelihood (PESEL)

When using representation (2.55), the integrated likelihood in the fixed effect model takes the
form:

logP (X|k) = log

∫
Θ

P (X|µ,W,T, σ) πk(µ,T,W, σ) dµ dT dW dσ

= log

∫
Θ

Πn
i=1φ(xi·;µi· + ti·W

T , σ2Ip) πk(µ,T,W, σ) dµ dT dW dσ, (3.1)

where φ(x; m,Σ) is the probability density function of the normal distribution with mean m
and covariance matrix Σ. It is invalid to apply Laplace approximation directly to the integral
in (3.1), as the number of parameters in this model is proportional to both the number of
observations n and the number of variables p. This violates the assumption in the Laplace
approximation that the dimension of the parameter space is constant. Thus, to perform such
an approximation one should reduce the dimensionality, for example by integrating out the
prior on either T or W. This choice is determined by asymptotics. For p → ∞, we need to
integrate out W because its number of parameters grows linearly in p. Similarly, for n → ∞,
T needs to be integrated out. After integrating out one of the priors, we can apply the Laplace
approximation for the resulting semi-integrated likelihood. This yields a new Bayesian criterion
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for estimating the dimension of the model, which we call PEnalized SEmi-integrated Likelihood
(PESEL).

In the introduction chapter we defined general MAP rule (2.51). In this chapter, for the
simplicity of calculations, we assume that prior distribution on models P (k) is uniform i.e. it
does not influence model selection. Please note, that PESEL can be readily used with any prior
distribution as the crux of the method lies within approximating the other part of posterior
probability.

3.1.1 PESEL for p fixed and n→∞
If we work in an asymptotic regime where n → ∞, then to apply the Laplace approximation
we need to integrate out T from (3.1) according to the formula:

logP (X|k) = log

∫
SIL(X|µ,W,T, σ)π(µ,W, σ) dµ dW dσ,

where SIL(X|µ,W,T, σ) :=
∫
P (X|µ,W,T, σ) π(T) dT is a semi-integrated likelihood function.

In the above µ = µi· = [µ1, µ2, . . . , µp] are the rows of µ from equation (2.55).
We propose using two forms of PESEL, based on specific prior distributions on the rows of

T. Firstly, we use the prior ti,· ∼ N (0, Ik), which gives the Probabilistic Principal Component
Analysis (PPCA) model of Tipping and Bishop [1999a]. (a random-effects version of our
fixed-effects model (2.55)). In this case ti·WT ∼ N (0,WWT ). Therefore our semi-integrated
likelihood is reduced to the likelihood in PPCA, under which x1·, . . . ,xn· are independent and

xi· = µ + ti·WT + εi· ∼ N (µ; WWT + σ2Ip). (3.2)

The second approach is to consider a prior ti· ∼ 1
β
N (0, Ik) with the additional restriction

WTW = Ik. This constraint makes all the singular values in PCA homogeneous (we will
refer to this by the abbreviation homo). In other words, all the PCA factors are equally
weighted, i.e. none of the directions dominate the data. This distinguishes it from the previous
prior, which allows for heterogeneous (abbreviated to hetero) singular values. The resulting
homogeneous distribution for ti· was discussed in [Rajan and Rayner, 1997]. With this prior
ti· , WT ∼ N (0, 1

β
WWT ), and the semi-integrated likelihood function for the rows of X

corresponds to x1·, . . . ,xn· being independent and

xi· ∼ N (µ;
1

β
WWT + σ2Ip). (3.3)

Let us now focus on the semi-integrated likelihood specified in formula (3.2), which yields

logP (X|k) = log

∫
SIL(X|µ,W, σ) π(µ,W, σ) dµ dW dσ

= log

∫
Πn
i=1φ(xi· − µ; WWT + σ2Ip) π(µ,W, σ) dµ dW dσ. (3.4)

Now, assuming that p << n and provided that π(µ,W, σ) satisfies standard regularity conditions,
it is possible to apply the Laplace approximation to the integral in (3.4).

To calculate number of free parameters in (3.4) let us decompose the matrix W, as in (3.9):
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W = U(L− σ2Ik)
1/2R,

UTU = Ik,

RTR = Ik.

This implies the following equality:

WWT + σ2Ip = U(Λk − σ2Ik)
1/2R(U(Λk − σ2Ik)

1/2R)T + σ2Ip =

= U(Λk − σ2Ik)
1/2RRT (Λk − σ2(Ik)

1/2))TUT + σ2Ip = (3.5)

= U(Λk − σ2Ik)U
T + σ2Ip.

In the above derivation we use the fact that R is an orthogonal square matrix.
Using (3.5) we can write the likelihood in (3.4) for the whole data as:

p(X|µ,W, σ2) = Πn
i=1p(xi,·|µ,W, σ2)

= (2π)−pn/2|WWT + σ2Ip|−n/2 exp

[
−1

2
tr((WWT + σ2Ip)

−1S)

]
= (2π)−pn/2|U(Λk − σ2Ik)U

T + σ2Ip|−n/2 exp

[
−1

2
tr
(
(U(Λk − σ2Ik)U

T + σ2In)−1S
)]
.

(3.6)

We assume that all parameters are a priori independent. Then, since R is not part of the
likelihood in (3.6), it can be integrated out. Thus, the integral in (3.4) is reduced to∫

p(X|µ,W, σ2)dµ dW dσ2 =

∫
p(X|µ,U,L,R, σ2)dµ dU dL dR dσ2 =

∫
p(X|µ,U,L, σ2)dµ dU dL dσ2.

(3.7)

U can be described with pk − k(k+1)
2

parameters – this is a dimension of the p × k Steifel
manifold [James, 1954]. L has k parameters, µ has p parameters and σ is one parameter.

logP (X|k) ≈ logSIL(X|µ̂,Ŵ, σ̂)− 1

2
K log n, (3.8)

where K =
pk − k(k+1)

2
+ k + p+ 1

2
is the number of free parameters in the integral in (3.4).

From Tipping and Bishop [1999a], we get the parameter values that maximize the semi-integrated
likelihood SIL:

µ̂ =
1

n

n∑
i=1

xi·, (3.9)

Ŵ = U(Λk − σ̂2Ik)
1/2R, (3.10)

σ̂2 =

∑p
j=k+1 λj

p− k
,

where the orthogonal matrix U contains the first k eigenvectors of the sample covariance matrix

Σ = S
n

with S =
∑n

i=1

(
xi· − µ̂

)T
(xi·−µ̂), Λk =

 λ1 . . . 0
... λl

...
0 . . . λk

 contains the corresponding

eigenvalues, and R is a rotation matrix.
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After plugging in the ML estimates (3.9) to the semi-integrated likelihood, we obtain (see
also [Minka, 2000]):

SIL(X|µ̂,Ŵ, σ̂2) = (2π)−pn/2
(
Πk
j=1λj

)−n/2
(σ̂2)−n(p−k)/2 exp(−pn

2
). (3.11)

Thus, (3.8) gives the Penalized SEmi-integrated Likelihood criterion (PESEL):

PESELheteron (k) = −pn
2

log 2π−n
2

k∑
j=1

log λj−
n(p− k)

2
log(σ̂2)−pn

2
−log(n)

pk − k(k+1)
2

+ k + p+ 1

2

(3.12)

Remark
PESELheteron coincides with BIC for PPCA, as proposed by Minka [2000]. The major difference
is that Minka [2000] developed this criterion using a specific prior distribution on W and noise
σ2, while we show that the approximation is valid for any regular prior on these parameters.
Minka [2000] also suggests a second criterion called the Laplace evidence, which depends on
the selected prior distribution on W. This idea was further developed by Hoyle [2008], who
added additional terms in the approximation, which make it possible to deal with the situation
of p increasing proportionally to n. However, the drawback of this approach is that it is highly
dependent on the prior on W and does not solve the problem when n = const and p → ∞,
which is the main focus of this article and which is solved by the PESELp criterion introduced
in the next section.

Now, consider the semi-integrated likelihood in (3.3). As before, we can compute the parameters
that maximize the semi-integrated likelihood:

µ̂ =
1

n

n∑
i=1

xi·,
Ŵ = first k eigenvectors of the covariance matrix, (3.13)

σ̂2 =

∑p
j=k+1 λj

n− k
,

β̂ =

∑k
j=1 λj

k
− σ̂2.

(3.14)

Then PESEL is of the form:

PESELhomon = −pn
2

log 2π − nk

2
log

(∑k
j=1 λj

k

)
− n(p− k)

2
log(σ̂2) (3.15)

−pn
2
− log(n)

pk − k(k+1)
2

+ p+ 1 + 1

2
.

Remark
As for PESELhomon , it uses the prior and marginal likelihood from [Rajan and Rayner, 1997].
However, Rajan and Rayner [1997] did not penalize the likelihood according to the number of
parameters. Thus their criterion tends to significantly overestimate the number of components,
which was confirmed in simulations.
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Let us provide some insight into the difference between the two priors and criteria presented
in this Section. Observe that in (3.12) there is a term with the sum of logarithms of the first
k eigenvalues

∑k
j=1 log λj. As in model (3.3), W is assumed to be orthonormal, all of the k

largest eigenvalues have to be equal, and their estimate is
∑k
j=1 λj

k
. Thus, in the corresponding

term in (3.15), the sum of the logarithms of the k largest eigenvalues is k log

(∑k
j=1 λj

k

)
. This

observation is yet another justification for referring to formula (3.12) as a heterogeneous PESEL
and to formula (3.15) as a homogeneous PESEL. The other difference is in the penalty term. Due
to the assumption of equal eigenvalues in homogeneous PESEL, the number of free parameters
related to the estimation of eigenvalues is equal to 1, while in the heterogeneous PESEL this
number is equal to k; since we need to estimate k distinct eigenvalues.

Now, let us return to the choice of prior for k. Observe from (2.51) that

logP (k|X) ≈ PESEL(k) + logP (k) + C(X). (3.16)

Thus, in the case when prior distribution P (k) is uniform, maximization of PESEL corresponds
to maximization of the posterior probability of k. According to equation (3.16), supplementing
PESEL by logP (k) allows maximization of the approximated posterior probability for any
selection of P (k). Moreover, PESEL can be used to approximate the posterior probability for
k using the formula

P (k|X) ≈ ePESEL(k)P (k)∑min(n,p)
k=1 ePESEL(k)P (k)

,

which allows us to evaluate the uncertainty related to the specific choice of k, as illustrated in
Section 3.3.5.

3.1.2 PESEL for n fixed and p→∞
The asymptotics for p → ∞ and n = const, which is of great interest in many applications,
has, as far as we know, never been properly discussed. In this setting we need to integrate out
W from (3.1). Then it becomes possible to apply the Laplace approximation. Consider the
fixed-effects model expressed in terms of the columns of matrix X (see 2.50),:

x·j ∼ N (µ + TwT
j·, σ2In),

where µ = µ·j = [µ1, µ2, . . . , µn]T satisfies equation (2.55).
Analogously to the previous section, we propose using one of two priors on the rows of

the loadings matrix W. The difference between these priors was previously described in
Section 3.1.1.

wj· ∼ N (0, Ik), which yields:

x·j ∼ N (µ; TTT + σ2In). (3.17)

wj· ∼ 1
β
N (0, Ik) with the constraint that TTT = Ik, which yields:

x·j ∼ N (µ;
1

β
TTT + σ2In). (3.18)
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For both these priors, the marginal distributions for variables x·j are independent with the
covariance matrix depending only on factors T. The related model with random loadings W
and fixed factors T is in fact interpretable and intuitive. This is the case because when p is
much larger than n, we may model our variables being randomly selected from a set of linear
combinations of a small number k ≤ n of fixed factors. Now, observe that the probabilistic
models (3.2) and (3.17) are equivalent up to the transposition of the data X. To see this,
consider transposition of the model (2.55) XT − µT = WTT + ET . Now, the equivalence
follows directly from the symmetry of the prior distributions for the rows of T and W. The
simulation results that we present in Section 3.3.3 confirm that depending on the relationship
between n and p, one should choose the model designed for either p or n→∞.
In case of the first prior (3.17) PESELp takes the form:

PESELheterop = log p(X|µ̂, T̂, σ̂2)− log(p)
nk − k(k+1)

2
+ k + n+ 1

2

= −pn
2

log(2π)− p

2

k∑
j=1

log λj −
p(n− k)

2
log(σ̂2)− pn

2
(3.19)

− log(p)
nk − k(k+1)

2
+ k + n+ 1

2
,

where

µ̂ = (µ̂1, . . . , µ̂n) =
1

p

p∑
j=1

x·j,

T̂ = U(Λk − σ̂2Ik)
1/2R,

σ̂2 =

∑p
j=k+1 λj

p− k
,

where the orthogonal matrix U contains the first k eigenvectors of the sample covariance matrix

of XT , Σp = S
p

with Sp =
∑p

j=1

(
x·j − µ̂

)T
(x·j − µ̂), Λk =

 λ1 . . . 0
... λl

...
0 . . . λk

 contains the

corresponding eigenvalues, and R is a rotation matrix.
In the case of the second prior distribution (3.18), PESEL has the following form:

PESELhomop = log p(X|µ̂, T̂, σ̂2, β̂)− log(p)
nk − k(k+1)

2
+ n+ 1 + 1

2

= −pn
2

log(2π)− pk

2
log

(∑k
j=1 λj

k

)
− p(n− k)

2
log(σ̂2)− pn

2
(3.20)

− log(p)
nk − k(k+1)

2
+ n+ 2

2
,

where

β̂ =

∑k
j=1 λj

k
− σ̂2.
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Remark To evaluate PESEL, the eigenvalues of the covariance matrix need to be computed.
To reduce the computational burden, when n >> p we diagonalize the covariance matrix XTX
of size p×p, whereas when n << p we diagonalize the inner-product matrix XXT of size n×n.
Since we work in regimes where one mode is usually much larger than the other, this procedure
is well suited to reduce the computational cost, which is O(min(n, p)3). Alternatively, SVD can
be used, which is O(npk) and it is not a burden when one of the dimensions is relatively small.
In the case of super large matrices, one can still efficiently calculate eigenvalues using random
projections (see Witten and Candès [2013]), which paves the way also applying our technique
in this ”super-large” setup.

3.2 Consistency of PESEL

In this section we shall prove the consistency of PESEL method. We are considering the case
when the number of variables p is fixed and the number of observations n → ∞. Because of
the transposition argument in the Section 3.1.2, the following result also holds when p → ∞
and n is fixed.
Assume that the data X comes from normal distribution according to the model (2.53):

Xn×p − µn×p = Mn×p + En×p, (3.21)

where

• for each n ∈ N , matrices Mn×p = M(n) and µn×p are deterministic

• µn×p is rank-one matrix in which all rows are identical, i.e. it represents average variable
effect.

• Mn×p is a centered
∑n

i=1Mi,j = 0

• elements of matrix Mn×p are bounded, supn,i∈(1,...,n),j∈(1,...,n) Mi,j <∞

• Mn×p is a low rank matrix k0 = rank(Mn×p)

∀n
MT

n×pMn×p

n
= UDp×pU

T (3.22)

where

Dp×p =

(
diag[γi]

k0
i=1 0

0 diag[0]

)
with γi > 0 and matrix U is fixed p × p matrix. consists of eigenvectors of matrix
MT

n×pMn×p

• the noise matrix En×p consists of i.i.d. terms eij ∼ N(0, σ2)

Theorem 3.2.1 (Consistency Theorem)
Let k̂0(n) be the PESELn estimator of the number of PCA factors for the data matrix Xn×p
drawn according to the probabilistic model (3.21).

Then, for p fixed,
P(∃n0∀n>n0 k̂0(n) = k0) = 1

43



Chapter 3. Estimating number of Principal Components 3.2. Consistency of PESEL

The idea of the proof is the following. As value of PESEL criterion PESELn(X, k) for a
given number of principal components k depends only on a sample covariance matrix S =
(X− X̄)T (X− X̄)

n
and not on the data X directly, we shall treat it as a function of sample

covariance matrix. Firstly, we prove that if we substitute sample covariance matrix with its
expected value

Σn = E (S) =
MT

n×pMn×p

n
+ diag[σ2]

then, as n→∞, PESEL criterion PESELn(Σn, k) is consistent. This part comprises two steps:
showing that PESEL is increasing for k < k0 and showing that is is decreasing for k > k0.
Second element of the proof, is quantifying the difference between Λn and S. We focus on the
maximum discrepancy between eigenvalues of these two matrices. We prove it to be bounded

by the matrix norm of their difference, which goes to 0 at the pace
√

ln lnn√
n

as n grows to infinity
because of the law of iterated logarithm. Finally, we show that for large enough n, such a
small perturbation of eigenvalues of Σn does not lead to a violation of consistency, thus proving
Theorem 3.2.1.

Lemma 3.2.2 Let Σn be expected value of sample covariance matrix of X and Λn be the
diagonal matrix of sorted eigenvalues of Σn Let k̂0(n) be the PESELn estimator of the number
of PCA factors based on the matrix Λn, that is the maximizer of the formula for PESELn:

F (Σn, n, k) =

n

2
· −

[
k∑
j=1

ln(λj) + (p− k) ln

(
1

p− k

p∑
j=k+1

λj

)
+ p ln(2π) + p

]
︸ ︷︷ ︸

MΣn (k)

− ln(n)
pk − k(k+1)

2
+ k + p+ 1

2︸ ︷︷ ︸
PΣn (n,k)

(3.23)

Then, for p fixed,

lim
n→∞

k̂0(n) = k0.

Lemma 3.2.3 PESEL function F (Σn, n, k) is decreasing in k for k ≥ k0

Proof
For the clarity, we shall use notation M(k) = MΣn(k) and P (n, k) = PΣn(n, k). Let λi denote
eigenvalues of matrix Λn. λi = γi + σ2 because from (3.21):

MT
n×pMn×p

n
+ σ2I = UDp×pU

T + σ2UIUT = U
(
Dp×p + σ2I

)
UT

We combine two observations.

1. When k increases, the penalty

P (n, k) = ln(n)
pk − k(k+1)

2
+ k + p+ 1

2
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increases. Indeed, we compute P (n, k + 1)− P (n, k) = lnn
2

(p− k) > 0
2.The non-penalty part of PESEL formula (3.23)

M(k) = −

[
k∑
j=1

ln(λj) + (p− k) ln

(
1

p− k

p∑
j=k+1

λj

)
+ p ln(2π) + p

]

is constant for k ≥ k0.
For the clarity, we omit terms in M(k) that do not include k. Observe that λl is constant for
l ≥ k0 + 1. Denote λ̃ = λk0+1. For k ≥ k0 we have

−M(k) =
k∑
j=1

ln(λj) + (p− k) ln

(
1

p− k

p∑
j=k+1

λj

)

=

k0∑
j=1

ln(λj) + (k − k0) ln λ̃+ (p− k) ln

(
1

p− k

p∑
j=k+1

λ̃

)

=

k0∑
j=1

ln(λj) + (k − k0) ln λ̃+ (p− k) ln λ̃

=

k0∑
j=1

ln(λj) + (p− k0) ln λ̃

which is independent of k.

Lemma 3.2.4 PESEL function F (Σn, n, k) is increasing in k for k < k0

Proof
We first prove that M(k) is increasing for k < k0. The idea is to use concavity of logarithm
function.

For the simpler notation, let us consider M(k)−M(k + 1) thus getting rid of a minus sign.

M(k)−M(k + 1) =

[
lnλk+1 + (p− k − 1) ln

∑p
k+2 λj

p− k − 1
− (p− k) ln

∑p
k+1 λj

p− k

]
= lnλk+1 − ln

∑p
k+2 λj

p− k − 1
+ (p− k)

[
ln

∑p
k+2 λj

p− k − 1
− ln

∑p
k+1 λj

p− k

]

Let us now denote, a = λk+1 and b =
∑p
k+2 λj

p−k−1
. Then the above becomes:

ln a− ln b+ (p− k)

[
ln b− ln

b(p− k − 1) + a

p− k

]
Let a = b+ ε, ε > 0.
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ln(b+ ε)− ln b+ (p− k)

[
ln b− ln(b+

ε

p− k
)

]
?
< 0

ln(b+ ε)− ln b
?
< (p− k)

[
ln(b+

ε

p− k
)− ln b

]
ln(b+ ε)− ln b

p− k
?
< ln(b+

ε

p− k
)− ln b

ln(b+ ε)

p− k
+ (1− 1

p− k
) ln b

?
< ln(b+

ε

p− k
)

Which is concavity condition for x1 = b, x2 = b+ ε, θ = 1
p−k .

However, the crux of the proof of consistency is making sure, that increase in M(k) is larger

than (p−k) logn
n

(increase in penalty). Let us further approximate the difference M(k)−M(k+1)
using Taylor expansion and bounding by the value of second derivative. This should be larger
than lnn

n
.

We will use notation as above. And exploit concavity of ln function. We use Taylor expansion
at point x0

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x?)

2
(x− x0)2,

where x? ∈ (x, x0).
Let x0 = θx1 + (1− θ)x2 and take x = x1

f(x1) = f(x0) + f ′(x0)(1− θ)(x1 − x2) +
f ′′(x?1)

2
(1− θ)2(x1 − x2)2 (3.24)

Similarly take x = x2

f(x2) = f(x0) + f ′(x0)θ(x2 − x1) +
f ′′(x?2)

2
θ2(x2 − x1)2 (3.25)

Now let us multiple (3.24) by θ and (3.25) by 1− θ and sum them up.

θf(x1) + (1− θ)f(x2) =θ

[
f(x0) + f ′(x0)(1− θ)(x1 − x2) +

f ′′(x?1)

2
(1− θ)2(x1 − x2)2

]
+

+ (1− θ)
[
f(x0) + f ′(x0)θ(x2 − x1) +

f ′′(x?2)

2
θ2(x2 − x1)2

]
=θf(x0) + f ′(x0)θ(1− θ)(x1 − x2) + θ

f ′′(x?1)

2
(1− θ)2(x1 − x2)2+

+ (1− θ)f(x0) + f ′(x0)(1− θ)θ(x2 − x1) + (1− θ)f
′′(x?2)

2
θ2(x2 − x1)2

=f(x0) + θ
f ′′(x?1)

2
(1− θ)2(x1 − x2)2 + (1− θ)f

′′(x?2)

2
θ2(x2 − x1)2

=f(x0) + θ(1− θ)(x2 − x1)2

[
f ′′(x?1)

2
(1− θ) +

f ′′(x?2)

2
θ

]
In our case f ′′(x) = − 1

x2 , which means that
f ′′(x?i )

2
< f ′′(x2)

2
because x?1 ∈ (x1, x0) < x2 and

x?2 ∈ (x0, x2) < x2. This gives us:
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θf(x1) + (1− θ)f(x2)− f(x0) = θ(1− θ)(x2 − x1)2

[
f ′′(x?1)

2
(1− θ) +

f ′′(x?2)

2
θ

]
(3.26)

< θ(1− θ)(x2 − x1)2

[
f ′′(x2)

2
(1− θ) +

f ′′(x2)

2
θ

]
= θ(1− θ)(x2 − x1)2f

′′(x2)

2

Going back with our notation to M(k),

x1 = b =

∑p
k+2 λj

p− k − 1
,

x2 = b+ ε = a = λk+1,

θ = 1− 1

p− k
we have

θf(x1) + (1− θ)f(x2)− f(x0) =
1

p− k
[M(k)−M(k + 1)]

and inequality (3.26) becomes:

θf(x1) + (1− θ)f(x2)− f(x0) =(
1− 1

p− k

)
ln

( ∑p
k+2 λj

p− k − 1

)
+

1

p− k
ln(λk+1)− ln

(
(1− 1

p− k
)

∑p
k+2 λj

p− k − 1
+

1

p− k
λk+1

)
<

1

p− k

(
1− 1

p− k

)(
λk+1 −

∑p
k+2 λj

p− k − 1

)2 −1

2λ2
k+1

Now we multiple both sides by p− k.

(p− k − 1) ln

( ∑p
k+2 λj

p− k − 1

)
+ ln(λk+1)− (p− k) ln

(
(1− 1

p− k
)

∑p
k+2 λj

p− k − 1
+

1

p− k
λk+1

)
< −

(
1− 1

p− k

)(
λk+1 −

∑p
k+2 λj

p− k − 1

)2
1

2λ2
k+1

So,

M(k + 1)−M(k) >

(
1− 1

p− k

)(
λk+1 −

∑p
k+2 λj

p− k − 1

)2
1

2λ2
k+1

=
p− k − 1

p− k

(
λk+1 −

∑p
k+2 λj

p− k − 1

)2
1

2λ2
k+1

because k+1≤k0

>
p− k0 − 1

p− k0

(
λk+1 −

∑p
k+2 λj

p− k − 1

)2
1

2λ2
1

(3.27)

=
p− k0 − 1

p− k0

ck(γ)2 1

2(γ1 + σ2)2

>
p− k0 − 1

p− k0

min
k<k0

ck(γ)2 1

2(γ1 + σ2)2
= C > 0
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where ck(γ) = γk+1 −
∑k0
i=k+2 γi

p−k−1
> 0 depends on the eigenvalues of matrix vM γi. In the

inequality (3.27), we used the fact that p−x−1
p−x is decreasing in x, inequality λk+1 ≤ λ1 and the

fact that (
λk+1 −

∑p
i=k+2 λj

p− k − 1

)
= γk+1 + σ2 −

∑p
i=k+2 γi

p− k − 1
− σ2 = ck(γ).

Thus we have constant C, which is independent of k and n.
To conclude the proof for expected value of sample covariance matrix, let us observe, that
the increase in n

2
M(k) is larger than the increase in penalty term P (n, k + 1) − P (n, k) =

lnn
2

(p− k) > 0 when n→∞,
In fact

n

2
[M(k + 1)−M(k)] ≥ n

2
C >>

lnn

2
(p− k) = P (n, k + 1)− P (n, k).

This implies that the PESEL estimator function F (n, k) = n
2
M(k)−P (n, k) is strictly increasing

for k ≤ k0 and large enough n.

Proof of lemma 3.2.2
Since, for large enough n, PESEL function F (n, k) is decreasing in k for k ≥ k0 and F (n, k) is
increasing in k for k < k0 then

lim
n→∞

arg max
k

F (n, k) = lim
n→∞

k̂0(n) = k0

To prove the theorem for sample covariance matrix, we are going to need a bound on difference
between eigenvalues of sample covariance and covariance matrices.

Lemma 3.2.5 There exists C ′ > 0 such that

almost surely ∃n0 ∀n ≥ n0 ‖λ(S)− λ(Σ)‖∞ ≤ C ′
√

2 ln lnn√
n

, (3.28)

where S is sample covariance matrix for data drawn according to model (3.21), Σ is its expected
value and function λ(·) returns sequence of eigenvalues.

Proof
Observe that∥∥∥∥∥(X−X)T (X−X)

n
− Σ

∥∥∥∥∥
∞

= max
1≤i,j≤p

‖ 1

n
(X·,i −X·,i)T (X·,j −X·,j)− Σi,j‖

Because of norm equivalence, we shall now consider `2 norm and add some constant multiplier.
Each element 1

n
(X·,i −X·,i)T (X·,j −X·,j)− Σi,j we can rewrite in the following way:

1

n
(X·,i −X·,i)T (X·,j −X·,j)− Σi,j =

=
1

n
(X·,i − µi)T (X·,j −X·,j) +

1

n
(µi −X·,i)T (X·,j −X·,j)− Σi,j

=
1

n
(X·,i − µi)T (X·,j − µj) +

1

n
(X·,i − µi)T (µj −X·,j)

+
1

n
(µi −X·,i)T (X·,j − µj) +

1

n
(µi −X·,i)T (µj −X·,j)− Σi,j
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Taking norm over above and using triangle inequality we get:

∥∥∥∥ 1

n
(X·,i −X·,i)T (X·,j −X·,j)− Σi,j

∥∥∥∥ < (3.29)

<

∥∥∥∥ 1

n
(X·,i − µi)T (X·,j − µj)− Σi,j

∥∥∥∥+

∥∥∥∥ 1

n
(X·,i − µi)T (µj −X·,j)

∥∥∥∥
+

∥∥∥∥ 1

n
(µi −X·,i)T (X·,j − µj)

∥∥∥∥+

∥∥∥∥ 1

n
(µi −X·,i)T (µj −X·,j)

∥∥∥∥
Recall that

Σi,j =


MT

i Mj

n
if i 6= j

MT
i Mj

n
+ σ2 if i = j

Without loss of generality, let us consider first case. Let us now consider first element:

1

n
(X·,i − µi)T (X·,j − µj)− Σi,j =

=
1

n
(X·,i − µi)T (X·,j − µj)−

MT
i Mj

n

=
1

n
(X·,i − µi −Mi)

T (X·,j − µj −Mj)

+
1

n
(X·,i − µi)TMj −

MT
i Mj

n

+
1

n
MT

i (X·,j − µj)−
MT

i Mj

n

Again we apply norm and triangle inequality and get:

∥∥∥∥ 1

n
(X·,i − µi)T (X·,j − µj)− Σi,j

∥∥∥∥ < (3.30)∥∥∥∥ 1

n
(X·,i − µi −Mi)

T (X·,j − µj −Mj)

∥∥∥∥
+

∥∥∥∥∥ 1

n
(X·,i − µi)TMj −

MT
i Mj

n

∥∥∥∥∥
+

∥∥∥∥∥ 1

n
MT

i (X·,j − µj)−
MT

i Mj

n

∥∥∥∥∥ =

=

∥∥∥∥ 1

n
(X·,i − µi −Mi)

T (X·,j − µj −Mj)

∥∥∥∥
+

∥∥∥∥ 1

n
(X·,i − µi −Mi)

TMj

∥∥∥∥
+

∥∥∥∥ 1

n
MT

i (X·,j − µj −Mj)

∥∥∥∥
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Putting above results together we get:

∥∥∥∥ 1

n
(X·,i −X·,i)T (X·,j −X·,j)− Σi,j

∥∥∥∥ < (3.31)∥∥∥∥ 1

n
(X·,i − µi −Mi)

T (X·,j − µj −Mj)

∥∥∥∥
+

∥∥∥∥ 1

n
(X·,i − µi −Mi)

TMj

∥∥∥∥
+

∥∥∥∥ 1

n
MT

i (X·,j − µj −Mj)

∥∥∥∥
+

∥∥∥∥ 1

n
(X·,i − µi)T (µj −X·,j)

∥∥∥∥
+

∥∥∥∥ 1

n
(µi −X·,i)T (X·,j − µj)

∥∥∥∥+

∥∥∥∥ 1

n
(µi −X·,i)T (µj −X·,j)

∥∥∥∥
Observe that Xl,i ∼ N (µi +Ml,i, σ

2). So,

• X,i ∼ 1
n
N (nµi +

∑
lMl,j, nσ

2) = N (µi,
σ2

n
) because M is centered

• X,i − µi −M,i ∼ N (0, σ2I)

• X,i − µi ∼ N (M,i, σ
2I)

We shall now bound norms in (3.31).
Let us consider:

∥∥∥∥ 1

n
(X·,i − µi)T (µj −X·,j1)

∥∥∥∥ ≤
vi︷ ︸︸ ︷∥∥∥∥ 1√

n
(X·,i − µi)

∥∥∥∥
wj︷ ︸︸ ︷∥∥∥∥ 1√

n
(µj −X·,j1)

∥∥∥∥
where inequality comes from Cauchy-Schwartz and wj = (µj − X·,j1) = 1

n

∑
lEl,j. are i.i.d.

N (0, σ2), so we can apply law of iterated logarithm. For some constant C > σ2:

almost surely ∃nC ∀n ≥ nC
1

n

∑
l

El,j < C

√
ln lnn√
n

Second term vi we can expanded using the fact that X·,i − µi = M·,i + E·,i

v2
j =

1

n
(M·,i + E·,i)

TM·,i + E·,i =
1

n

(
MT
·,iM·,i + 2MT

·,iE·,i + ET
·,iE·,i

)
Let us denote M̃ = MTM

n
. From (3.22) M̃i,i =

MT
·,iM·,i

n
is constant. Furthermore 1

n
ET
·,iE·,i =

1
n

∑
lE

2
l,i converges a.s. to EE2

l,i = σ2 from law of large numbers. To prove right pace of
convergence of term MT

·,iE·,i we are going need a generalized version of Law of iterated algorithm
(Theorem 2.2.3). Its assumtions are trivially met for random variables

Ml,iEl,i ∼ N (0,M2
l,iσ

2)
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as they are Gaussian and Bn+1

Bn
= n+1

n
→ 1, where Bn is defined as Bn =

∑
lM

2
l,iσ

2 =

MT
·,iM·,iσ

2 = nM̃i,iσ
2.

Thus the following holds

limsupn→∞
∑
l=1

MT
l,iEl,i =

√
2Bn log logBn a.s.

where
To conclude, vj goes to some constant a.s. Therefore vjwj can be bounded for some constant

C ′ by:

almost surely ∃nC′ ∀n ≥ nC′ vjwj ≤ C ′
√

ln lnn√
n

Similarly let us consider

∥∥∥∥ 1

n
(µi −X·,i)T (µj −X·,j)

∥∥∥∥ ≤ ∥∥∥∥ 1√
n

(µi −X·,i)
∥∥∥∥∥∥∥∥ 1√

n
(µj −X·,j)

∥∥∥∥
Those two parts are wi and wj. Therefore:

almost surely ∃nC′′ ∀n ≥ nC′′ wiwj ≤ C ′′
ln lnn

n

Finally let us consider:

1

n
(X·,i − µi −Mi)

TMj =
1

n

n∑
l=1

(Xl,i − µi −Ml,i)Ml,j

=
1

n

n∑
l=1

El,jMl,j

This exactly term we bounded using generalized Law of iterated logarithm.
For the final term

∥∥ 1
n
(X·,i − µi −Mi)

T (X·,j − µj −Mj)
∥∥ we can also apply Law of Iterated

Logarithm. For every (i, j) when n→∞:

almost surely ∃ni,j ∀n ≥ ni,j ‖
1

n
(X·,i − µi −Mi)

T (X·,j − µj −Mj)‖ ≤ C0
i,j

√
2 ln lnn√

n
(3.32)

Because we bounded all the elements in 3.31 by terms that tend to 0 at pace
√

2 ln lnn√
n

we get
that

almost surely ∃ni,j ∀n ≥ ni,j ‖
1

n

1

n
(X·,i −X·,i)T (X·,j −X·,j)− Σi,j‖ ≤ Ci,j

√
2 ln lnn√

n

Because we take maximum over finite number of p2 elements, we also get a bound for the norm
almost surely with ñ0 = maxi,j ni,j, C̃ = maxi,j Ci,j

almost surely ∃ñ0 ∀n ≥ ñ0 ‖ 1

n
XTX − Σ‖ ≤ C̃

√
2 ln lnn√

n
(3.33)
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Inequality (3.28) holds because (3.33) holds and, by [Bai and Silverstein] Theorem A.46(A.7.3),
when A,B are symmetric

max
k
|λk(A)− λk(B)| ≤ ‖A−B‖,

where function λk(·) denotes kth eigenvalue.

Having consistency for true covariance matrix and bound on perturbation of eigenvalues when
dealing with sample covariance matrix, we are ready to prove the main theorem.

Proof of Theorem 3.2.1

Recall notation from lemma 3.2.2 where F (n, k) denotes the value of PESEL criterion for
k principal components and n observations, M(k) denotes the value of main part of PESEL
criterion while P (n, k) denotes the penalty term.

Because of lemma 3.2.5 eigenvalues of sample covariance matrix S are approximately equal
to:

λ(Cov(X)) = λ(MT
n×pMn×p + σ2I) = (γ1 + σ2, . . . , γk0 + σ2, σ2, . . . , σ2),

where γ1, . . . , γk0 are the eigenvalues of MT
n×pMn×p like in the proof of lemma (3.2.2).

If those were equal i.e. λ(S) = λ(Σ), then lemma 3.2.2 holds. We will use the main ideas from
the proof of lemma 3.2.2 to solve the general case λ(S) 6= λ(Σ).
Let εn = maxi |λi(S) − λi(Σ)|. From lemma 3.2.5 we have limn εn = 0 almost surely, so for
almost all samplings, there exists n0 such that if n ≥ n0,

εn < σ2 and εn <
1

4
min

k≤k0−1
ck(γ), (3.34)

where ck(γ) = γk+1 −
∑p
k+2 γi

p−k−1
> 0 for k ≤ k0 − 1.

We study the sequence M(k). For the simplicity, from now we use notation for λj = λj(S).
Case k ≤ k0 − 1.

We use the formula (3.27) from the proof of lemma 3.2.2:

M(k + 1)−M(k) >
p− k0 − 1

p− k0

(
λk+1 −

∑p
k+2 λj

p− k − 1

)2
1

2λ2
1

We have λi ∈ [γi + σ2 − εn, γi + σ2 + εn], so(
λk+1 −

∑p
k+2 λj

p− k − 1

)
≥ γk+1+σ2−εn−

∑p
k+2(γi + σ2 + εn)

p− k − 1
= ck(γ)−2εn ≥ min

k≤k0−1
ck(γ)−2εn > 0

Putting above two together we get that, almost surely, there exists n0 such that for all n ≥ n0

and k = 1, . . . , k0 − 1,

M(k + 1)−M(k) >
p− k0 − 1

p− k0

( min
k≤k0−1

ck(γ)− 2εn)2 1

2(γ1 + σ2 + εn)2
>
C ′

2
min

k≤k0−1
ck(γ) > C > 0

where C,C ′ are constants independent of k and n. It follows that for large enough n

n

2
[M(k + 1)−M(k)] ≥ n

2
C >>

lnn

2
(p− k) = P (n, k + 1)− P (n, k).
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This implies that the PESEL estimator function F (n, k) = n
2
M(k) − P (n, k) is strictly

increasing for k ≤ k0.

Case k ≥ k0. Recall that this case was very simple for the deterministic matrix case, as
M(k) was constant for k ≥ k0.

By Lemma 3.2.5 we have that, for almost all samplings, there exists n0 such that if n ≥ n0,

εn ≤ C

√
2 ln lnn√

n
and εn <

1

2
σ2 (3.35)

We apply the formula (3.26) and as before, we set

x1 = b =

∑p
k+2 λj

p− k − 1

x2 = a = λk+1

θ = 1− 1

p− k

which makes left hand side of (3.26) equal:

θf(x1) + (1− θ)f(x2)− f(x0) =
1

p− k
[M(k)−M(k + 1)]

Multiplying by −1 and substituting values in (3.26) yields:

M(k + 1)−M(k) ≤
(

1− 1

p− k

)(
λk+1 −

∑p
k+2 λj

p− k − 1

)2
1

2b2
≤ (λk+1 − b)2 1

2b2

≤ (|λk+1 − σ2|+ |σ2 − b|)2 1

2b2

≤ (|λk+1 − σ2|+
∑p

k+2 |σ2 − λj|
p− k − 1

)2 1

2b2

≤ 4ε2n
1

2(σ2 − εn)2
≤ C2 2 ln lnn

n

4

2σ4
= C ′

ln lnn

n

and consequently
n

2
[M(k + 1)−M(k)] ≤ C ′′ ln lnn

Recall that PESEL criterion equals F (n, k) = n
2
M(k)− P (n, k). So The increase of n

2
M(k) is

smaller than the rate ln lnn, while the increase of penalty is P (n, k+ 1)−P (n, k) = lnn
2

(p− k)
is of rate lnn. Consequently, there exists n1 that for n > n1, the PESEL estimator function is
strictly decreasing for k ≥ k0 with probability 1
.

We saw in the first part of the proof that the PESEL estimator function F (n, k) is strictly
increasing for k ≤ k0, for n big enough. It implies that with probability 1, ∃n2 such that for
n > n2 k̂0(n) = k0.
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3.3 Simulation study

We tested the performance of various methods of model selection by comparing the distributions
of the inferred dimensionality for data drawn from a known model. Firstly, we aimed to verify
how different heterogeneous and homogeneous PESELs are in practice. Secondly, we ask how
crucial is the assumption of particular asymptotics, i.e. how much better can we do by using
PESELp when the number of variables exceeds the number of observations. Thirdly, we focused
on how robust PESEL is in comparison to state-of-the-art approaches.

3.3.1 Methods

We present results of simulations of seven methods for the estimation of the number of PCs.
Three of them have already been described in this paper:

• Heterogeneous PESEL for n >> p, PESELheteron defined in formula (3.12) and equivalent
to BIC for the PPCA model proposed by Minka [2000].

• Heterogeneous PESEL for p >> n, PESELheterop defined in formula (3.19).

• Homogeneous PESEL for p >> n, PESELhomop defined in formula (3.20).

We compare these three criteria to four state-of-the-art methods:

• Laplace evidence [Minka, 2000, eq. 76], which can be viewed as an extension of PESELheteron ,
as it contains more terms from the Laplace approximation. Since Minka [2000] used a
specific non-informative prior distribution on the elements of SVD decomposition of the
matrix W and the variance of the noise σ2, Laplace evidence depends on that choice and
is less general than PESEL.

• Generalized Cross-Validation [Josse and Husson, 2012], which, according to the simulation
study presented in [Josse and Husson, 2012], performs very well in comparison to many
other up-to-date methods for estimating the number of principal components. We used
the implementation from the R package FactoMineR [Husson et al., 2014].

• CSV [Choi et al., 2014], which is an exact distribution-based method for testing a hypothesis
about the number of principal components. We used our own implementation in MATLAB,
since the authors did not provide the code for CSV. In the simulation study, we experienced
numerical difficulties with computing the multidimensional integrals that are part of the
test statistic. This was observed for a moderate increase in either the number of variables
or the signal to noise ratio (defined thereafter). CSV provides an exact test for the number
of principal components when the variance of the noise σ2 is known. In the case when σ2

needs to be estimated, CSV no longer guarantees control of the type I error. To compare
CSV with other methods which do not require knowledge of σ, we followed the suggestion
made by Choi et al. [2014] and estimated σ2 by cross-validation using the softImpute R
package [Hastie and Mazumder, 2015].

• The method proposed in [Passemier et al., 2015], which uses the random matrix theory
to estimate the variance of the noise. This enhanced estimator is then applied to choose
the number of principal components using Stein’s unbiased risk estimator (SURE) or the
determination criterion of Bai and Ng [2002]. This method is developed in the asymptotic
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setting where both n and p diverge to infinity, and n/p → γ > 0. The implementation
of this method is available on the author’s webpage. In the results of the simulations we
shall refer to this method as Passemier. We use the version of Passemier based on the
determination criterion, since the software for SURE requires n > p, .

Apart from both versions of PESELp, all of the methods are based on decomposition of the
standard covariance matrix, which implicitly assumes a model with independent rows and
centers the data by subtracting the column means.

3.3.2 Simulations

In the simulations, we compared performance of analyzed methods for various numbers of
variables in the data set, varying from 50 to 2000, the number of observations equal to 50, 100
or 2000, and the signal to noise ratios (SNR) in the range [0.25; 8]. By SNR we mean the ratio
between the l2 norm of the columns of the signal matrix M and the variance of the noise. In
the simulations, we standardized the columns of the signal matrix M to have a zero mean and
a unit l2 norm, and so the SNR is given by:

SNR =
1

σ2
,

where σ2 is the variance of the noise (as in (2.53)). Naturally, when the number of variables
grows, the combined signal from all the variables is relatively stronger, since all these variables
are spanned by the same few factors and combined information allows more accurate estimation
of the number of factors. Therefore, we expect that the performance of any statistical method
should become more accurate when p increases. This intuition is backed up by the simulation
results.

We studied the following scenarios:

Scenario 1. In the first scenario we verified how different the criteria PESELheteron (3.12) and
PESELhomon (3.15) are in practice. In the first scheme we set all the non-zero singular
values equal to each other:
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Algorithm 4 Simulation scheme for a signal matrix with equal singular values

Input: Number of observations n, number of variables p, number of PCs k, SNR
1: Each entry of the matrix M is drawn from the standard normal distribution, mij ∼ N(0, 1).

2: while all singular values in the normalized matrix M are not equal to each other do
3: Perform SVD of the matrix M = ULVT .
4: Set all of the first k singular values from L equal to their mean and the rest of the singular

values to 0.

l̃i :=
1

k

k∑
j=1

lj, i = 1, . . . , k,

Ũ := U[·, 1 : k]

Ṽ := V[·, 1 : k],

where lj is the j-th element on the diagonal of L.
5: Set M := ŨL̃ṼT .
6: Standardize M so that each column has a zero mean and a unit l2 norm.
7: end while
8: xi,j := mi,j +N (0, 1

SNR
)

The reason for the while loop is that after standardization the eigenvalues might no
longer be equal. Therefore, we need several steps to obtain the matrix M which has all
eigenvalues equal and at the same time it has standardized columns.

Scenario 2. The second scheme is analogous, but this time we make the non-zero singular values
decrease exponentially:

Algorithm 5 Simulation scheme for a signal matrix with exponentially decreasing singular
values

Input: Number of observations n, number of variables p, number of PCs k, SNR
1: Each entry of the matrix M is drawn from the standard normal distribution, mij ∼ N(0, 1)

2: Perform SVD of the matrix M = ULVT .
3: Set all of the singular values of order greater than k to 0, and the largest k to:

l̃i := C2−i, i = 1, . . . , k

Ũ := U[·, 1 : k],

Ṽ := V[·, 1 : k],

where lj is the j-th element on the diagonal of L and C = (
∑k

j=1 lj)/(
∑k

i=1 2−i) is a
normalizing constant.

4: Set M := Ũ L̃Ṽ T

5: Standardize M so that each column has a zero mean and a unit l2 norm.
6: xi,j := mi,j +N (0, 1

SNR
)
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Scenario 3. The data are generated according to the fixed effect probabilistic model (2.55).
Both scores T and coefficients W are drawn once from the multivariate normal distribution:
ti· ∼ N (0, I), wj· ∼ N (0, I). The signal matrix is calculated as M̃ := TWT and
standardized so that each column has a zero mean and a unit l2 norm. In each iteration
of the experiment, a random noise is added to the signal matrix M:

xi,j = mi,j + εij i = 1, . . . , n , j = 1, . . . , p (3.36)

εij ∼ N (0,
1

SNR
).

Scenario 4. The data are generated as in Scenario 3. However, noise is drawn from the rescaled

Student distribution with three degrees of freedom, εij ∼ 1
SNR

√
1
3
t(3).

Scenario 5. The data are generated as in Scenario 3. However, noise is drawn from the rescaled
log-normal distribution with parameters µ = 2 and σ2 = 1.2,
εij ∼ 1

SNR
1√

(eσ2−1)e2µ+σ2
lnN (µ, σ2).

Scenario 6. The data are generated as in Scenario 3. However, a number of surplus noisy
variables zi ∼ N (0, I), i = 1, . . . , p/2 is added to the data. Xn× 3

2
p =

[
Mn×p + En×p ¦ Zn×p/2

]
.

An example of when such a violation of our assumptions could occur is when PCA is used
in an iterative procedure for clustering variables. It might happen that some of the
variables are falsely classified, yet we would still like to recover the true dimensionality of
a given cluster.

We replicated each simulation scenario 100 times to get a reliable comparison between the
methods.

3.3.3 Results

In the following sections, we present only some selected, representative, simulation results. The
true number of principal components is k = 5. The results for the number of components equal
to 2 or 10 were similar, and therefore are not reported in this paper. We also simulated the data
from a random effects model. Factors and coefficients were drawn from normal, heavy-tailed
(student), skewed (exponential) or uniform distributions. The qualitative conclusions were also
consistent with the simulation results presented in this paper.

When using k = 5 we reduced the computational burden of the simulation study by restricting
our methods to search only for the dimensions from the set {kmin = 1, . . . , kmax = 10}.

Comparison between PESELhomo and PESELhetero

It can be seen in Figure 3.1 that the difference in performance between the two PESEL criteria
backs up the remarks made in Section 3.1.1. PESELhomo, which assumes the equality of
singular values, performs consistently better when the data are simulated in accordance with
this assumption. Conversely, when singular values are substantially different from each other,
PESELheteron gets has an edge and the difference between the methods is larger. Since in our
simulation study these two criteria performed comparably, in the remainder of the paper we
report only results for PESELhetero. Results for PESELhomo are nevertheless available in a
supplementary file.

57



Chapter 3. Estimating number of Principal Components 3.3. Simulation study

Figure 3.1: Comparison of performance for PESELheteron (3.12) and PESELhomon (3.15). Data are
simulated using scenarios 1 (left) and 2 (right). The number of variables is 50, number
of observations is 100. The true number of PCs is 5. When the singular values are equal,
then homogenous PESEL has an edge over heterogenous PESEL and vice versa.
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Impact of the number of the ratio n/p

Figure 3.2 illustrates the performance of various methods when the number of observations n
is either very large or very small compared to the number of variables p. The results are not
surprising, as the methods that assume asymptotics in n work better when n is large and vice
versa. Note that probabilistic methods outperform GCV when the p

n
ratio is in accordance with

their underlying asymptotics. In particular, PESELp is superior to all the other approaches
when p >> n. In the case of n >> p, we observe superior performance of the criterion of
[Minka, 2000] based on an extended version of Laplace approximation.

Figure 3.2: Data generated according to Scenario 2. The true number of components is 5. The results
are for n = 2000, p = 50 and n = 50, p = 2000.

Figure 3.3 illustrates the situation when the data are drawn according to Scenario 3. On
the right panel, we retrieve the same concusions as the ones given previously. The left panel
corresponds to a case where the number of variables and observations are more balanced. In
the case of p ∼ n (n = 100, p = 150 ), both PESELheteron and PESELheterop methods
are outperformed by GCV. This is not surprising, because neither is designed for such cases.
The GCV method, although not always the best, often provides fair results in many settings.
Passemier’s discriminant criterion is inferior to both PESELs. Laplace evidence performs poorly
when the number of variables is large compared to the number of observations. CSV works well
with weak signals and a small number of variables. However, when either grows, it encounters
the numerical problems described in Section 3.3.1.

Robustness

As mentioned in the introduction, the main motivation for testing robustness is when PCA is
used as an auxiliary technique. In such a case it might have to deal with data with excessive
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Figure 3.3: Data generated according to Scenario 3. The true number of components is 5. The
numbers of variables are 150 and 1600, respectively. The number of observations is
constant and equal to 100.

noise. We report results for three kinds of violations of the assumed probabilistic model,
previously described in Section 3.3.2. Specifically, Figures 3.4, 3.5, 3.6 and 3.7 illustrate the
performance of various methods for the data generated according to Scenarios 4, 5 and 6 (twice),
respectively.

For the clarity of plots, in Figures 3.4-3.7 we selected only 4 methods for a detailed comparison.
The graphs illustrate the frequency of selection of various numbers of principal components as
a function of the signal to noise ratio for two different dimensions of the data set: n = 100, p =
150 and n = 100, p = 800.

We observe that all the represented methods deal quite well with the symmetric Student noise
(Scenario 4). Here GCV performs very well when the signal is weak or moderate. This
however comes at the price of overestimation the number of components when the signal is very
strong. Passemier performs opposite. It substantially underestimates the number of principal
components when the signal is weak or moderate and performs well when the signal is very
strong. PESELheterop takes the place between these two approaches. It slightly underestimates
the number of principal components when the signal is weak and does not overestimate when
the signal is strong.

Scenario 5, with stronly skewed log-normal noise, turns out to be much more difficult. When
n = 100 and p = 150, GCV substantially overestimates the number of principal components,
even for relatively weak signals. Passemier is rather unstable. It overestimates the number
of principal components when the signal is weak and substantially underestimates when the
signal is strong. Compared to these two methods PESEL performs surprisingly well. It
accurately estimates the number of PCs when the signal is weak and moderate and only slightly
overestimates when the signal is strong. When p in increased to 800, the performance of GCV

60



Chapter 3. Estimating number of Principal Components 3.3. Simulation study

Figure 3.4: Data drawn according to Scenario 4 (noise from a Student distribution). The true number
of components is 5. The size of each symbol is proportional to the particular frequency of
a result. The lines represent the mean of the estimated numbers of Principal Components.
The numbers of variables are 150 and 800. The number of observations is constant and
equal to 100.

substantially improves, while Passemier deteriorates completely and is not able to pick any
signal.
Scenario 6, with additional noisy variables, yields results similar to Scenario 4. When p is
comparable to n, PESEL is inferior to GCV when signal is weak or moderate, but does not
overestimate the number of principal components when either number of variables or SNR
grows. Passemier is systematically inferior to PESEL.
As for the methods not included in the plots, PESELhomop behaves comparably to PESELheterop ,
but is slightly more robust agains the deviations from the assumptions of the probabilistic model
when the signal is strong (results in the supplementary file). Laplace evidence proves to be
least robust, as it has a tendency to underestimate the number of PCs when a probabilistic
model is violated. Laplace evidence is also highly dependent on the assumed asymptotics, i.e.
n >> p. For CSV, when the signal becomes stronger or the number of variables increases, it
is increasingly difficult to compute any of the multidimensional integrals this method requires.
As a result, we did not manage to use this method to estimate the number of PCs under our
simulation scenarios.

3.3.4 Summary of simulation results

All in all, the performance of PESELp is competitive with up-to-date methods. Note that
GCV is a serious competitor for data simulated according to Scenario 3. However, when p is
much larger than n, which is our main focus, PESELp is better. Similar conclusions are drawn
from a robustness study, despite the fact that PESELp was derived under specific probabilistic
assumptions. Specifically, when the number of variables is moderate and the signal is strong
PESEL is less prone to overfitting than GCV.
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Figure 3.5: Data drawn according to Scenario 5 (noise from the log-normal distribution) with
parameters µ = 2, σ2 = 1.2. The true number of components is 5. The size of each
symbol is proportional to the frequency of the particular result. The lines represent the
mean of the estimated numbers of Principal Components. The numbers of variables are
150 and 800. The number of observations is constant and equal to 100.

Figure 3.6: Data drawn according to the Scenario 6 (surplus noisy variables). The true number of
components is 5. The size of each symbol is proportional to the frequency of the particular
result. The lines represent the mean of the estimated numbers of Principal Components.
The numbers of variables are 150 and 800. The number of observations is constant and
equal to 100.
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Figure 3.7: Data drawn according to Scenario 6 (surplus noisy variables). The true number of
components is 5. The size of each symbol is proportional to the frequency of the particular
result. The lines represent the mean of the estimated numbers of Principal Components.
The signal to noise ratios take values 1 and 4. The number of variables varies from 50 to
800. The number of observations is constant and equal to 100.

3.3.5 Data analysis

We illustrate our method based on the ”mice” data which come from the Genetics Department
of the University of Agronomy Agrocampus in France. This is an experiment with 40 mice of 2
genotypes (wild, PPARα-deficient). In the field of molecular biology, peroxisome proliferator-activated
receptors (PPARs) are a group of nuclear receptor proteins that function as transcription
factors regulating the expression of genes. PPARs play essential roles in the regulation of
cellular differentiation, development, and metabolism (carbohydrate, lipid, and protein) in
higher organisms. PPARs are expressed in the liver, kidney, heart, muscle, adipose tissue, and
others. The mice were subject to 5 diets: dha (a diet rich in fatty acids of the Omega 3 family
and particularly docosahexaenoic acid [DHA], based on fish oil), efad (Essential Fatty Acid
Deficient: a diet based on saturated fatty acids only, made from hydrogenated coconut oil), lin
(a diet rich in Omega 3, made from linseed oil), ref (a regime with seven times more Omega 6
than Omega 3), tsol (a diet rich in Omega 6, based on sunflower oil). At the end of the diet
periods, the genes were analysed using DNA chips, and the expression of 120 genes was read for
all the mice. The aim of the study is to see whether genes are expressed differently depending
on the level of stress.

We used GCV and PESELheterop to identify the number of principal components in gene
expression data. Figure 3.8 provides both the PESEL criterion and the associated posterior
probabilities calculated with equation (3.16) and using the non-informative, uniform prior on
k. The second plot is very informative and suggests that apart from the dimension 5, for which
PESEL obtains a maximum value, the dimensions 6 and 7 are also very likely.
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Figure 3.8: Left: Values of PESELheterop for various k, right: approximated posterior
probabilities of the number of principal components.

GCV returns 12 dimensions which seems less likely, since our mice are differentiated only by
2 genotypes and 5 diets and we may expect at most 9 dimensions to represent the between-class
variability.
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Figure 3.10: Left: correlation between the genes and dimensions 1 and 2. Right: correlation
between the genes and dimensions 3 and 4.

Left panel of Figure 3.9 represents the scores on the first two dimensions of the PCA with
the mice colored according to their genotype. The figure shows that the second dimension of
variability differentiates genotypes W and NW. In the right panel of Figure 3.9, the observations
(mice) are projected on dimensions 3 and 4, and each diet is represented at the barycenter of
the mice that take this diet. This figure highlights that dimension 3 differentiates mice with
the regime efad from mice with the regime dha. Figure 3.10 represents the loadings, i.e. the
correlations between the variables (the genes) and the principal components. The rules of
interpretation are the following: mice with large coordinates on a given principal component
have high expressions of the genes highly positively correlated with that dimension and low
expressions of the genes highly negatively correlated with that dimension.

In Table 3.1 we report the results of some other methods, which we considered in the
simulation study. It turns out that Passemier almost agrees with PESEL and returns 6 PCs,
while CSV fails completely (which may be due to the sub-optimal implementation of numerical
integration). Compared to other methods PESEL is extremely fast to compute. Specifically, it
is 10 times quicker than GCV and 20 times quicker than Passemier.
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Table 3.1: Elapsed time of the analysis of the mice data-set on the 8-core computer with Intel(R)
Core(TM) i7-4770 CPU @ 3.40GHz

Method Time Number of PCs
PESEL 4.5 ms 5
GCV 47.5 ms 12

Passemier 85 ms 6

CSV
2200 ms (R) +
76 ms (MATLAB)

0
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4 Dimensionality reduction via variables
clustering

Overview

In this chapter we propose a new method for subspace clustering problem: Multiple Latent
Components Clustering (MLCC), which is a major extension of an algorithm described in
[Chavent et al., 2012]. We formulate a probabilistic model and starting from ’maximum a
posteriori’ rule, we derive a modified Bayesian Information Criterion (mBIC). Our method
enables clustering of multivariate data under the assumption that variables are grouped in
low-rank subspaces. We created an efficient heuristic algorithm for identifying models with
large values of mBIC criterion. It is based on k-medoids algorithm, where a) each cluster is
a subspace b) medoid (representative, center) of a cluster is a set of principal components c)
similarity measure between variable and the ”representative” is given by the classical Bayesian
Information Criterion in the respective multiple regression model. The final number of clusters
and their dimensions are selected based on mBIC. The proposed method is implemented in
R package varclust [Sobczyk et al., 2017b]. The simulation study confirms good properties
of our method as compared to existing, state-of-the-art approaches. The algorithm, initial
versions of the package and the simulation study were reported at the conference ”Statystyka
Matematyczna” [Sobczyk et al., 2014]. All results are reported in the forthcoming preprint
Sobczyk et al. [2019].

4.1 Probabilistic model for subspace clustering

Let us denote the number of clusters by K and let us assume that after some permutations of
columns X can be represented as

X = M + E ,

where
M = Fn×kCk×p ,

with F = [F1, . . . , FK ], Fi ∈Mn×ki ,
∑

i ki = k and the matrix C where in each column of C the
nonzero elements can occur only in rows corresponding to variables spanning a given cluster.
Clearly, such a representation is not unique. However, our main goal is to find permutation
and representation of subspaces, such that k is minimized. Putting above in a less formal way,
we assume that the data comes from the union of subspaces. This means that the variables
(columns of the data matrix) can be divided into clusters, each of which consists of variables
from one of the subspaces. We work under an assumption that subspaces are low dimensional.
Therefore every variable in a single cluster can be expressed as a linear combination of small
number of factors (common for every variable in this cluster) plus some noise and a constant
vector (mean).
To formalize these statements, let us consider data coming from just one cluster. We denote
Xi = (xi1, . . . , x

i
pi

) as set of the variables in ith cluster. xij ∈ Rn denotes jth variable and
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n is, as always, the number of individuals. Let Fi ∈ Rn×ki stand for the matrix of factors.
Let us denote by c1, . . . , cki vectors of coefficients corresponding to variables xi1, . . . , x

i
pi

where
cij = (cij1, . . . , c

i
jki

)T . Then, the matrix Xi containing variables from ith cluster that comes from
the above model, has the form

Xi = FiCi + µi + ε

ε ∼ N(0, σ2
i In)

For each individual subspaces we assume the same probabilistic model as in PESEL. Depending
on whether n > pi or pi < n we assume normal prior for Ci or Fi (see section 3.1 for details)
and µ is matrix with either identical rows or columns.
Model above is assumed for every cluster. Therefore for the entire data X we specify model

MK = {K, {k1, . . . , kK}, {Di}, {θi}},

where

• K - number of clusters (low dimensional subspaces that data come from)

• k1, . . . , kK - dimensions (number of factors) of each cluster,

• segmentation {Di} - segmentation of variables into matrices Xi – clusters, subsets of
columns of X

• set of parameters for the i-th cluster: θi {Fi, Ci ∈Mki×pi , σ
2
i , µi}. Ci are nonzero elements

in the rows of matrix of coefficients C corresponding to Fi. We have separate sets for
each cluster i = 1, . . . , K

Please take a careful look at the notation in this section. M represents the signal in the data,
while M is a model. Let us denote by Mi the model (set of variables and parameters) for ith

cluster. f(θi) is likelihood function in the ith cluster. We denote space of parameters for ith

cluster by Θi and for whole model by Θ. One representative of the latter is θ = (θ1, . . . , θK).
We want to select model that maximizes a posteriori probability

ln (P (M |X)) = − lnP (X) + lnP (M) + ln (P (X|M))

P (X) does not depend on the model. P (M) is prior distribution on the model. We shall focus
on it in the next section. For now, let us consider last term in the sum above. We assume that
prior distributions for all clusters are independent which yields:

ln (P (X|M)) = ln

(∫
Θ

f(X|θ)f(θ|M)dθ

)
= ln

(∫
Θ

K∏
i=1

f(Xi|θi)f(θi|Mi)dθ

)

= ln

(
K∏
i=1

∫
Θi

f(Xi|θi)f(θi|Mi)dθi

)

=
K∑
i=1

ln

(∫
Θi

f(Xi|θi)f(θi|Mi)dθi

)
=

K∑
i=1

ln (P (Xi|Mi)) (4.1)

Approximation of individual terms ln (P (Xi|Mi)) is provided by PESEL, described in details
in Chapter 3.
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4.1.1 Choosing prior distribution

In the classic BIC prior distribution is set to be non-informative (see e.g. [Neath and Cavanaugh,
2012]). Which means that lnP (MK) has no effect on estimation process. However, because
of all possible variables segmentations, when the number of clusters K increases, number of
models grows exponentially Kp. Due to this fact, BIC tends to overestimate number of clusters.
Similar phenomenon was previously described for the problem of regression in [Bogdan et al.,
2004]. To mitigate this effect we must use an informative prior that would lead to each number
of clusters being equally probable.
Let us consider how many different partitions we have for a given model. Each of p variables
can be assigned to any of K clusters, so we have approximately Kp different partitions. Since
we want each number of clusters to be a priori equally probable, it brings us to the following
formula

P (MK) ∼ 1

Kp

log(P (MK)) ∼ −p log(K) (4.2)

Moreover, we need to take into account the dimensions of clusters. Assume that maximal
dimensions of single subspace is d. Then for fixed segmentation we have d different models for
every cluster. This gives total of dK different possible dimensions of the clusters. Thus we need
to adjust 4.2 and prior distribution is the following:

P (MK) =
1

Kp

1

dK

ln(P (MK)) = −p ln(K)−K ln(d) (4.3)

Combining (4.3) and we get

log(P (MK |X) ≈ log(P (MK)) + log(P (X|MK)) (4.4)

= log(P (MK)) +
K∑
i=1

ln
(
P (Xi|MK

i )
)

K∑
i=1

ln
(
P (Xi|MK

i )
)
− p ln(K)−K ln(d)

Approximation to formula for P (Xi|MK
i ) is provided by PESEL and depends on whether n > pi

(see Section 3.1.1). It is given either by (3.19) or (3.12).

4.2 Heuristic algorithm to reduce computational burden

In the previous section w argued that finding a model that maximizes mBIC (4.4) is a viable
approach for solving subspace clustering problem. However, due to the huge number of competing
models, computing mBIC for each of them becomes intractable even for moderate p and d.
Therefore, in Sobczyk et al. [2016] we propose heuristic algorithm for finding optimal value
of criterion (4.4). This algorithm is based on a specific implementation of K-means algorithm
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where subspaces (clusters) centers are vectors that span those subspaces. We compute them by
taking a subset of principal components. Their number i.e. dimension of cluster is not fixed,
but estimated using PESEL. In each iteration variables are assigned to the cluster closest to it.
We measure that based on regular BIC - penalized residual sum of squares.
K-means algorithm is known to get stuck at the local maxima. Performance strongly depends
on the choice of initial subspaces. To reduce the chance that the local minimum of mBIC is
obtained instead of the global one, algorithm is run many times, with different (not necessarily
random) initializations of cluster centers.

Algorithm 6 Multiple Latent Components Clustering

Input: n - number of individuals, p - number of variables, Xn×p = (x1, . . . , xp) - data set, d -
maximal subspace dimension, N - number of runs of the algorithm
Scale X to have columns with mean 0 and unit variance
for i ∈ {1, . . . , N} do

1. Initialize clusters’ centers

2. Until convergence or maximal number of iterations is reached repeat

a) For every variable xj and every cluster factors Fj′ fit a linear regression model
without intercept lm(xj ∼ Fj′) and store BIC value as BICjj′

b) Assign each variable xj to the cluster Mq where

q = arg max
j′∈{1,...,K}

BICjj′

c) For every cluster Mi use PESEL to estimate its dimensionality ki with an upper
bound of d. Use PCA to compute the first ki principal components and store
them in Fi

3. Store mBIC for computed model
end for
Choose the model with the highest value of mBIC and return the model (segmentation,
mBIC, factors) as the result.

The first step of our algorithm (initialization), in section (4.3) we will compare two approaches
- random initialization and initialization by the result of SSC. What is significant MLCC can
also be run when the number of clusters is not known. In that case the algorithm is run for
different number of clusters and the best model is chosen using mBIC. It is crucial because none
of the methods mentioned in the next section can be directly used to automatically choose the
number of clusters.
MLCC can be viewed as an extended version of ClustOfVar (COV, Chavent et al. [2012]). This
algorithm also exploits K-means method. Initial clusters centers are chosen randomly from the
data. Unlike in MLCC the center of a cluster is always one variable. The similarity measure is
squared Pearson correlation coefficient. In each iterative step of the algorithm, every variable
is assigned to the most similar cluster using mentioned measure. Then for every cluster, PCA
is performed to find the first principal component and make it a new cluster center. What
is interesting this method can be used both on quantitative and qualitative variables. The
downside is that no rationale for selecting number of clusters was introduced.
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4.3 Simulation study

In this section, we present the result of simulation studies, in which we compare MLCC with
other methods of clustering. To measure the quality of the procedures we use introduce 3
measure of clustering effectiveness. We also compare execution time.

4.3.1 Clustering methods

In our simulations we compare the following methods:

1. MLCC with random initialization (MLCC)

2. MLCC with initialized with the result of Sparse Subspace Clustering (MLCCaSSC)

3. Sparse Subspace Clustering (SSC, Elhamifar and Vidal [2009])

4. Low Rank Subspace Clustering (LRSC, Vidal and Favaro [2014])

5. ClustOfVar (COV, Chavent et al. [2012])

In the first method we use random initialization which is a default setting in our software.
This means that we sample without replacement K variables from the data set and assign
each of them to F1, . . . , FK respectively. This procedure is done multiple times to avoid local
minimum. In the second method we take advantage of the possibility to provide the initial
segmentation before the start of the algorithm. It accelerates the procedure, because thanks to
such a hot start, we no longer need to run the algorithm many times. We initialize the centers
by performing the step 2 c) of the Algorithm 6 using given segmentation. In our simulation
study, we use the segmentation returned by SSC. Third and fourth methods are based on
spectral clustering and are described in detail in section 2.5.1. ClustOfVar is briefly described
in the previous section.

4.3.2 Synthetic data generation

To generate synthetic data to compare the methods from the previous section we use two data
generation methods. We shall refer to them later as modes. In the first mode, factors spanning
the subspaces in the first mode are shared between subspaces. In the second mode subspaces
are independent which is in accordance with the assume probabilistic model in section 4.1.

Here we present exact algorithms used for data generation:
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Algorithm 7 Data generation with shared factors

Input: n - number of individuals, SNR - signal to noise ratio, K - number of clusters, p -
number of variables, d - maximal dimension of a subspace
Number of factors m← K d

2

Factors F = (f1, . . . , fm) are generated independently from the multivariate standard normal
distribution and then F is scaled to have columns with mean equal to 0 and standard
deviation 1
Draw subspaces’ dimension d1, . . . dK uniformly from {1, . . . , d}
for i = 1, . . . , K do

Draw i-th subspaces basis as sample of size di uniformly from columns of F as Fi
Draw matrix of coefficients Ci from U(0.1, 1) · sgn(U(−1, 1))
Variables in the i-th subspace are Xi ← FiCi

end for
Scale matrix X = (X1, . . . , XK) to have columns with unit variance
return X + Z where Z ∼ N(0, 1

SNR
In)

Algorithm 8 Data generation with independent subspaces

Input: n - number of individuals, SNR - signal to noise ratio, K - number of clusters, p -
number of variables, d - maximal dimension of a subspace
Draw subspaces’ dimension d1, . . . dK uniformly from {1, . . . , d}
for i = 1, . . . , K do

Draw i-th subspaces basis Fi as sample of size di from multivariate standard normal
distribution
Draw matrix of coefficients Ci from U(0.1, 1) · sgn(U(−1, 1))
Variables in i-th subspace are Xi ← FiCi

end for
Scale matrix X = (X1, . . . , XK) to have columns with unit variance
return X + Z where Z ∼ N(0, 1

SNR
In)

4.3.3 Measures of effectiveness

To compare clustering produced by clustering methods we use three measures of effectiveness.

1. Adjusted Rand Index - one of the most popular measures of clustering effectiveness. Let
A,B be the partitions that we compare (one of them should be true partition). Let
a, b, c, d denote respectively the number of pairs of points from data set that are in the
same cluster both in A and B, that are in the same cluster in A but in different clusters
in B, that are in the same cluster in B but in different clusters in A and that are in the
different clusters both in A and B. Note that the total number of pairs is

(
p
2

)
. Then

ARI =

(
p
2

)
(a+ d)− [(a+ b)(a+ c) + (b+ d)(c+ d)](
p
2

)2 − [(a+ b)(a+ c) + (b+ d)(c+ d)]

The maximum value of ARI is 1 and when we assume that every clustering is equally
probable its expected value is 0. For details check Hubert and Arabie [1985].
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The following two measures are taken from So ltys [2010]. Let X = (x1, . . . xp) be the data
set, A be a partition into clusters A1, . . . An (true partition) and B be a partition into
clusters B1, . . . , Bm.

2. Integration - for the cluster Aj it is given by formula

Int(Aj) =
maxk=1,...,m#{i ∈ {1, . . . p} : xi ∈ Aj ∧ xi ∈ Bk}

#Aj

ClusterBk for which the maximum is reached is called integrating cluster ofAj. Integration
can be interpreted as the percentage of data points from given cluster of true partition
are in the same cluster in partition B. For the whole clustering

Int(A,B) =
1

n

n∑
j=1

Int(Aj)

3. Acontamination - for cluster Aj it is given by formula

Acont(Aj) =
#{i ∈ {1, . . . p} : xi ∈ Aj ∧ xi ∈ Bk}

#Bk

where Bk is integrating cluster for Aj. Idea of acontamination is complementary to
integration. It can be interpreted as the percentage of the data in the integrating cluster
Bk are from Aj. For the whole clustering

Acont(A,B) =
1

n

n∑
j=1

Acont(Aj)

Note that the bigger ARI, integration and acontamination are, the better is the clustering.
For all three indices the maximal value is 1.

4.3.4 Simulation results

In the following sections we present the results of our simulation. In order to make the results
reliable, for a given set of parameters, we generate the data (using algorithms (7) and (8))
100 times. We plot multiple boxplots to present not only mean performance but also the
variability of clustering for different methods. dimension stands for maximum dimension in
the data generation algorithms. By default the number of runs (random initializations) is set
to ninit = 30 and the maximal number of iterations within the kmeans loop is set to niter = 30.
These parameters proved to be a good trade-off between speed and accuracy. Other parameters
used to generate the data are written below the plots. To distinguish between two different
algorithms for generating data we use label mode, which takes the value shared, if the subspaces
may share the factors, and the value not shared otherwise.

Generation method

In this section we compare performance for one specific choice of parameters and two different
methods for generating data.
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(a) factors not shared (b) shared factors

Figure 4.1: Comparison with respect to the data generation method. Simulation parameters:
repets = 100, n = 100, p = 800, K = 5, d = 3, SNR = 1.

When the factors are not shared, SSC and MLCC provide almost perfect clustering, see
figure 4.1. Observe that clustering subspaces with shared factors is much more difficult. All
the methods give worse results in that case. However, MLCC and MLCCaSSC outperform all
the other methods and provide quite good clustering in opposite to SSC, LRSC and COV.
The reason for that is the mathematical formulation of SSC and LRSC - they assume that the
subspaces are independent which means that they do not have common factors in their bases.
It seems that they are not robust to the violation of this assumption.

Number of variables

In this section we compare the change in performance of methods with respect to the number
of variables in the dataset (figure 4.2).
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(a) p = 300 (b) p = 600

(c) p = 800 (d) p = 1500

Figure 4.2: Comparison with respect to the number of variables. Simulation parameters:
repets = 100, n = 100, K = 5, d = 3, SNR = 1, mode : shared.

When the number of variables increases, MLCC tends to produce better clustering. This
is an expected effect because when the number of clusters and subspace dimension stay the
same the total information about the cluster structure grows with every additional variable.
Therefore also PESEL from (3.19) gives a better approximation of the cluster dimensionality
and the task of finding the real model becomes easier. Note however, that for COV, LRSC,
SSC this does not hold as the results are nearly identical.
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Maximal dimension of subspace

We also check what happens when the number of parameters in the model of MLCC increases.
This could lead to overfitting as clusters are possibly more complex. Below, in the left column,
we compare the methods with respect to the maximal dimension of a subspace (dim = 3, 5, 7).
In the ’real world’ clustering problems it is however uncommon to know in advance the maximal
dimension of the subspaces. Therefore, in the right column, we check the performance of MLCC
and MLCCaSSC when let maximal subspace dimension to be twice as large as true one.
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(a) d = 3 (b) d = 3

(c) d = 5 (d) d = 5

(e) d = 7 (f) d = 7

Figure 4.3: Comparison with respect to the number of variables. Simulation parameters:
repets = 100, n = 100, p = 600, K = 5, SNR = 1, mode : shared. In the
left column the maximal dimension passed to MLCC was equal to d, in the right
we passed 2d.
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Looking at the first column, we can see that the effectiveness of MLCC grows slightly when
the maximal dimension increases. However, this effect is not as noticeable as in SSC. This
effect may seem to be unexpected for MLCC but variables from subspaces of higher dimensions
are easier to distinguish because their bases have more not shared components. In the second
column, the effectivenesses of our methods are very similar to the first column except for
dimension = 3, where the difference is not negligible. Nonetheless, these results indicate that
thanks to PESEL, MLCC performs well in terms of estimating the dimensions of the subspaces.

Number of clusters

The number of the parameters in the model for MLCC also grows significantly with the number
of clusters in the data set (figure 4.4).
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(a) K = 5 (b) K = 10

(c) K = 15 (d) K = 20

Figure 4.4: Comparison with respect to the number of clusters. Simulation parameters:
repets = 100, n = 100, p = 600, d = 3, SNR = 1, mode : not shared.

We can see that for MLCC the effectiveness of the clustering diminishes when the number
of clusters grows. The reason is the increased number of parameters in our model to estimate.
The opposite effect holds for LRSC, SSC and COV, although it is not as noticeable as for our
methods.
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Signal to noise ratio

One of the most important features of the data set is signal to noise ratio (SNR). Of course,
the problem of clustering is much more difficult when SNR is small because the corruption
caused by noise dominates the data. However, it is not uncommon in practice to find data
where SNR < 1 (figure 4.5).

(a) SNR = 0.5 (b) SNR = 0.75

(c) SNR = 1 (d) SNR = 2

Figure 4.5: Comparison with respect to the signal to noise ratio. Simulation parameters:
repets = 100, n = 100, p = 600, K = 5, d = 3, mode : not shared.
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For SNR = 0.5, MLCC produces a very good clustering. In contrary, SSC and LRSC perform
poorly. All methods give better results when SNR increases, however for SSC this effect is
the most noticeable. For SNR ≥ 1, SSC produces perfect or almost perfect clustering while
MLCC performs slightly worse.

Estimation of the number of clusters

Despite a large number of existing methods used in variable clustering, there are not many
tools for automatic detection of the number of clusters in the problem of clustering of variables.
Thanks to mBIC defined in Section 3, MLCC can be used in such scenario. W generate the
data set with given parameters 100 times and check how often each number of clusters from
range

[
K − K

2
, K + K

2

]
was chosen (figure 4.6)
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(a) K = 5 (b) K = 10

(c) K = 15 (d) K = 20

Figure 4.6: Estimation of the number of clusters. Simulation parameters: repets = 100, n =
100, p = 600, d = 3, SNR = 1 mode : not shared.

We see that for K = 5 the correct number of clusters was chosen most times. However,
when the number of clusters increases, the clustering task becomes more difficult, the number
of parameters in the model grows and MLCC tends to underestimate the number of clusters.
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4.3.5 Convergence speed analysis

In this section we check how mBIC converges with following iteration of the Kmeans loop for
four different initializations (figure 4.7).

(a) p = 750 (b) p = 1500

(c) p = 3000

Figure 4.7: mBIC with respect to the number of iteration for 4 different initializations.
Simulation parameters: n = 100, K = 5 d = 3, SNR = 1 mode : shared.

We can see that the convergence of mBIC criterion is quite fast: in most cases it needed no
more than 20 iterations of the Kmeans loop. We can also notice that the size of the dataset
(in this case the number of variables) doesn’t have big influence on the number of iterations
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till convergence. However the results in figure 4.7 show that multiple random initializations in
our algorithm are required to get satisfying results - the value of mBIC criterion varies a lot
between different initializations.

Execution time

In this section we compare the execution times of compared methods. They were obtained on
the machine with Intel(R) Core(TM) i7-4790 CPU 3.60GHz, 8 GB RAM. The results are in
figure 4.8. For the left plot K = 5 and for the right one p = 600.

(a) With respect to the number of variables (b) With respect to the number of clusters

Figure 4.8: Comparison of the execution time of the methods with respect to p and K.
Simulation parameters: repets = 100, n = 100, d = 3, SNR = 1 mode : shared.

On the plots for both MLCC and COV we used only one random initialization. Therefore
we can see that for ninit = 30 the execution time of MLCC will be proportionally larger.
However, thanks to parallel implementation in Sobczyk et al. [2016], MLCC execution time is
proportional to ninit

ncores
where ncores denotes the number of cores used (parameter given by the

user). Nonetheless, it MLCC is the most computationally complex of these methods. On the
other hand we can see that COV and SSC do not take longer for bigger number of clusters
when the opposite holds for MLCC and LRSC. What is more when the number of variables
increases, the execution time of SSC grows much more rapidly than time of one run of MLCC.
Therefore, for bigger datasets it is possible to test more random initializations of MLCC in the
same time as computation of SSC. Furthermore, running MLCC with segmentation returned
by SSC (enhancing the clustering) is not much more time consuming than SSC itself.

4.3.6 Summary of simulation results

The simulation results proved that usefulness of MLCC as a method for variable clustering.
Unlike other approaches, MLCC performs well even in the data with significant noise. It also
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proves its ability to recognize subspaces which have some common factors. This is an extremely
valuable feature having in mind applying it to identify genetic pathways. MLCC seems also to
be quite resistant to the increase of the maximal dimension of a subspace. To sum up, in every
setting of the parameters used in our simulation, MLCC outperformed LRSC and COV and did
better or as well as SSC. Furthermore, it can be used to detect the number of clusters in the
data set. Although it slightly underestimates number of clusters, simulation results suggests
that it is reasonably accurate.
The main drawback of MLCC is its computational complexity. Therefore, to reduce the
execution time one can provide custom hot initialization as in MLCCaSSC . This strategy in
all cases provided better results than SSC. It suggests that our algorithm can also be used to
enhance the clustering results of the other methods. This computational cost is related to the
choice of the parameters ninit or niter. Unfortunately, when data size increases, in order to get
acceptable clustering we have to increase at least one of these two values. However, it is worth
mentioning that in case of parameters used in out tests ninit = 30 and the maximal number of
iterations equal to 30 on a machine with 8 cores the execution time of MLCC is comparable
with execution time of SSC. So the problem is also with the complexity of the task, not only
the limits of the algorithm.
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5 Graphical Slope

Overview

In this chapter we introduce a new approach to estimating sparse precision matrix called
graphical SLOPE (gSLOPE). We define it as a convex optimization problem where objective is a
regularized likelihood function. Penalty term is based on ordered `1 norm (2.48). We introduce
two strategies for choosing sequence of λs. One is based on Holm correction for multiple
testing, other on Benjamini-Hochberg (B-H). We prove that for our specific choice of λs, under
certain assumptions on true precision matrix, we control block-FWER in a strong sense. We
propose algorithm for solving graphical SLOPE using ADMM. We prove its convergence. We
further construct new algorithm for solving regular SLOPE problem using ADMM. We show
in simulation study that it is superior to current FISTA implementation when columns of
design matrix are highly correlated or they vary significantly in variance. Finally we perform
extensive simulation study in which we compare gSLOPE to glasso. gSLOPE with B-H λs
proves to control FDR in various settings (especially for block diagonal matrix). Proving such
a property is a next step of research which is however not included in this thesis.

Estimation of the sparse inverse covariance (a.k.a. precision) matrix of multivariate Gaussian
variables has been studied quite actively in recent years, as it provides a practical tool to
understand statistical relations of variables in complex data in forms of a simple undirected
graph, which often reveals meaningful interactions of genes, users, news articles, operational
parts of a human driver and so on. We consider problem of estimating precision matrix, inverse
covariance matrix, Θ from a sample drawn from normal distribution with unknown covariance
matrix Σ. This is equivalent to estimating structure of graphical model. Non-zero elements
in precision matrix correspond to the vertices that share an edge. We assume that only few
elements of Θ are nonzero which makes it reasonable to use regularization in estimation process.

5.1 Regularization

The idea of regularization is simple. As we assume sparsity of a graph, we want to impose
penalty on the number of edges. This can be done mathematically formalized, analogously to
AIC and BIC, by using `0-based penalty.

R0(X) =
∑
i 6=j

I[xij 6= 0].

where X ∈Mptimesp. Adding it to the likelihood we obtain the following optimization problem

Θ̂ ∈ arg max
Θ∈Sp+
ρ0(Θ)≤k

{log det Θ− Tr (SΘ)} (5.1)

Just as in regression that was described in the section (2.3.7) `0-based constraint defines a
discrete, nonconvex problem. The problem is intractable, as finding the optimal Θ requires
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checking all
((p2)
k

)
possible subsets of k ∈ {1, . . . , p} edges. One might of course mimic heuristic,

greedy algorithms used for ’solving’ BIC. This has a downside, that we are never sure if a
solution found is optimal. Since number of parameters grows quadratic with respect to p, even
this simplified process is computationally complex.

5.1.1 Graphical lasso

Natural relaxation of `0 constraint are `1 based methods like graphical lasso [Banerjee et al.,
2008a] and [Friedman et al., 2008b]. This method is formulated as a solution to the unconstrained,
convex optimization problem:

Σ̂−1 = arg min
X�0

− log det(X) + Tr (SX) + λ‖X‖1 (5.2)

Different variations of problem (5.2) have been addressed quite extensively in machine learning,
e.g. d’Aspremont et al. [2008]; Banerjee et al. [2008b]; Friedman et al. [2008a]; Oztoprak et al.
[2012]; Rolfs et al. [2012]; Hsieh et al. [2011, 2012, 2013]; Mazumder and Hastie [2012]; Treister
and Turek [2014] just to name a few. More theoretical results on the statistical quality of the
estimate have been appearing, e.g. Meinshausen and Bühlmann [2006, 2010]; Yuan and Lin
[2007]; Banerjee et al. [2008b]; Rothman et al. [2008]; Lam and Fan [2009]; Raskutti et al. [2009];
Yuan [2010], as new properties become available for the closely related `1-penalized regression
in vector spaces. From these we shall look a bit more closely on two results, that are of most
interest for us.

Definition 5.1.1 (FWER for connected components) Let graph structure be comprised
of several disjoint connected components. Ck is true connectivity component of k-th vertex,
while C̃k is connectivity component of k-th vertex obtained by graph structure estimator. Then
by family wise error rate for connected components we denote the probability

P (∃k C̃k * Ck) ≤ α

Let us note that graph having more than one connected components is equivalent to the true
precision matrix Θ being block diagonal. In such a case [Banerjee et al., 2008a] suggested a
choice of λ, so that probability of falsely joining any two blocks is controlled. More specifically
they showed:

Theorem 5.1.2 (from [Banerjee et al., 2008a]) For any 0 < α < 1, if we perform glasso
using

λ(α) = max
i>j

σ̃iσ̃j
tn−2(α/p2)√

n− 2 + t2n−2(α/p2)

where tn−2(α) denotes 1−α quantile from Student’s distribution with n− 2 degrees of freedom.
Then FWER for connected components is controlled:

P (∃k Cλ
k * Ck) ≤ α

where Cλ
k is connectivity component of glasso estimator with parameter λ.
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Another property of interest is consistency, by which we mean recognizing true support of
Θ i.e. discovering all the edges in graphical model (with no false positives) when number of
observations grows to infinity. Proof of the consistency of glasso for a specific kind of λ can
be found in [Ravikumar et al., 2008]. Let us also note, that there is a proof of consistency
for a similar procedure by [Meinshausen and Bühlmann, 2006]. This method comprises fitting
lasso multiple times. In each fit, one variable is treated as response, while all the others form
design matrix. Zero coefficient in regression fit is equivalent to conditional independence, no
edge between variables. This way, this method can be used to estimate structure of graphical
model. In both of these proofs λs are asymptotically (in p and n) equivalent, and they are both
of rate log p√

n
.

5.2 Ordered L1 relaxation

In this section method glasso [Banerjee et al., 2008a] is generalized by using sorted `1 (2.48),
which exhibits attractive properties such as false discovery rate (FDR) control Bogdan et al.
[2015b]; Brzyski et al. [2015] and clustering of similar coefficients Bondell and Reich [2008];
Figueiredo and Nowak [2016]. We show the strategy for choosing regularization parameters
λ, so that we control probability of falsely joining connected components in the graph, while
getting higher power, than [Banerjee et al., 2008a].

Definition 5.2.1 For multivariate data X ∈ Mn×p, we define graphical SLOPE estimator of

precision matrix Θ̂gslope as a solution to the following optimization problem

Θ̂gslope = arg max
X�0

log det(X)− Tr (SX)− Jλ(X) (5.3)

where S is sample covariance matrix and Jλ is element wise sorted `1 norm.

Just like (5.2), (5.3) is convex optimization problem which can be efficiently solved. We show
an algorithm based on ADMM is section 5.3.3. The name graphical SLOPE (gslope) refers to
[Bogdan et al., 2015b] which was an inspiration for changing standard `1 norm to its sorted
version.

5.2.1 Dual problem

To prove the properties of (5.2.1) we must first consider its dual problem.

Lemma 5.2.2 Dual problem to the graphical SLOPE (5.2.1) has the following form

max
JDλ (W−S)≤1

log det(W ) (5.4)

Proof Let us start by rewriting SL1 norm in terms of its dual norm, which we shall denote by
JDλ . Putting standard formula into (5.3)

Jλ(X) = max
JDλ (U)≤1

Tr (UX)

yields
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max
X�0

log det(X)− Tr (SX)− max
JDλ (U)≤1

Tr (UX) .

Using the fact that trace is an additive function we get

max
X�0

min
JDλ (U)≤1

log det(X)− Tr (X(U + S))

For (5.2.1) strong duality holds (because problem is convex and Slater’s condition is satisfied).
Therefore min and max can be exchanged in the above.

min
JDλ (U)≤1

max
X�0

log det(X)− Tr (X(U + S))

There is a closed formula for the solution of inner maximization. We compute gradient (for
matrix function gradients and more see [Minka, December 2000]) and set it to zero. This yields

0 = d(log det(X)− Tr (X(U + S)))

= d log det(X)− dTr (X(U + S))

= Tr
(
X−1dX

)
− Tr ((U + S)dX)

= Tr
(
(X−1 − (U + S))dX

)
This is zero only when X−1−(U+S). For which Tr (X(U + S)) = Tr ((U + S)−1(U + S)) = p

and finally we get dual problem:

min
JDλ (U)≤1

− log det(U + S)− p

For the sake of notation let us rewrite W := U + S

max
JDλ (W−S)≤1

log det(W)

Dual problem (5.4) has an insightful interpretation. We want to maximize log det of a matrix
W, with a constraint that W cannot be a perturbation on sample covariance matrix S larger
than 1 in norm JDλ . When we solve graphical SLOPE (5.2.1), W is our estimate of covariance
matrix.

5.2.2 FWER for connected components by graphical SLOPE

Suppose that Σ is block diagonal matrix.

Σ =


Σ1 0 · · · 0
0 Σ2 · · · 0
...

...
. . .

...
0 · · · 0 Σl

 (5.5)

which is, as we noted before, equivalent to graph having l disjoint connected components.
[Banerjee et al., 2008a] show how to choose λ so we can control the FWER for connected
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components i.e. probability of falsely ’joining’ these blocks, estimating non-zero conditional
covariance outside of blocks.
We will show how to improve result by [Banerjee et al., 2008a] and also construct a λ sequence
for gslope that is guaranteed to have higher power and controls FWER in a weak sense.

Definition 5.2.3 (Holm λ sequence for gslope) For any given 0 < α < 1 we define Holm
λ sequence for gslope as

λ2k = λ2k−1 =

exp
2Φ−1( α

2·(m+1−k)
)

√
n− 3

− 1

1 + exp
2Φ−1( α

2·(m+1−k)
)

√
n− 3

,

for k = 1, . . . ,m, m =
p(p− 1)

2
.

λ elements come in pairs, which corresponds to correlation matrix being symmetric. First let
us prove:

Theorem 5.2.4 Applying Holm λs 5.2.3 to step down procedure on off-diagonal elements of
sample correlation matrix S controls FWER asymptotically.

FWERHolm λ ≤ α as n→∞
Proof Under hypothesis of zero correlation we have asymptotically with n→∞ (see [Kendall
et al., 1987]):

1

2
log

(
1 + Si,j

1− Si,j

)
√
n− 3 ∼ N (0, 1)

From lemma 2.3.8, we know that step down procedure with critical values corresponding to

p-values
α

m+ 1− k
, k = 1, . . . ,m controls FWER.

Since correlation matrix is symmetric, we have just m = p(p−1)
2

hypothesis to test. We get
the following equality for the asymptotic critical values:

|1
2

log

(
1 + λk

1− λk

)
√
n− 3| = Φ−1

(
α

2 · (m+ 1− k)

)

log

(
1 + λk

1− λk

)
=

2Φ−1( α
2·(m+1−k)

)
√
n− 3

1 + λk

1− λk
= exp

{
2Φ−1( α

2·(m+1−k)
)

√
n− 3

}

1 + λk = (1− λk) · exp
2Φ−1( α

2·(m+1−k)
)

√
n− 3

λk =

exp
2Φ−1( α

2·(m+1−k)
)

√
n− 3

− 1

1 + exp
2Φ−1( α

2·(m+1−k)
)

√
n− 3

(5.6)
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Theorem 5.2.5 Let Σ be given block diagonal correlation matrix and α ∈ (0, 1). We assume
further the dependency structure between elements of the sample covariance matrix is such that
the Hochberg’s step-up procedure controls FWER (see for example [Sarkar, 1998]). Solution to
graphical SLOPE problem 5.3 for the choice of λ sequence according to (5.2.3) asymptotically
controls FWER for connected components on level α. Furthermore, all elements of λ are smaller
than the value specified for analogous result for glasso by [Banerjee et al., 2008a].

The idea of the proof is the following. We consider dual problem instead of primal one. Because
duality gap is zero, inverse of matrix W is maximizer of original problem. Note that if precision
matrix Θ has block structure than so does correlation matrix Σ. In the first lemma, we show
that with high probability estimated correlation matrix W is feasible in our dual optimization
problem. We use Holms multiple testing correction for that. In the second lemma we show
that it is beneficial for the goal function to set off-block diagonal elements to zero, as it leads
to increase of determinant of the matrix W. Hence, with high probability, solution is in
agreement with block structure of true correlation matrix Σ. Please note, that the graphical
SLOPE estimator might be more sparse than true precision matrix. For example when λs→∞
then solution is diagonal matrix, which has FWER equal to 0.

Lemma 5.2.6 We use assumptions from Theorem (5.2.5). With probability 1−α, there exists a
matrix W with all off-block elements equal to 0 that satisfies feasibility condition JDλ (W−S) ≤ 1.

Proof

From the form of dual norm to sorted `1 we know that If ∀k|W − S|(k) ≤ λk then

JDλ (W − S) = max

{
|W − S|(1)

λ1

, . . . ,

∑p
k=1 |W − S|(k)∑p

k=1 λk

}
≤ 1

and as a consequence, treating the following as random events

{(Dλ (W − S) ≤ 1} ⊇ {∀k=1,...,p2 |W − S|(k) ≤ λk} (5.7)

So by setting λs that satisfy right hand side of (5.7) with given probability we get a lower bound
on probability that W is feasible.
For correlation estimate W which recovers true block structure, we have Wi,j = 0 for i and
j in separate blocks. We want to choose λs to that for all such (i, j) |Si,j| is smaller than
corresponding λ. In worst case scenario this has to hold for all m :=

(
p
2

)
different entries in

sample correlation matrix S. We exclude diagonal elements which are obviously non-zero, and
use symmetry of S.
So, we need |Si,j|(k) ≤ λk.

Now, we test it. If we assume that we scaled our data, we have correlation matrix S equal
to correlation matrix. Given that, under hypothesis of zero correlation we have asymptotically
with n→∞ (see [Kendall et al., 1987]):

1

2
log

(
1 + Si,j

1− Si,j

)
√
n− 3 ∼ N (0, 1)

Alternatively, one might use different limit distribution
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√
n− 2

Si,j√
1− S2

i,j

∼ t(n− 2)

where t(n− 2) is Student distribution with n− 2 degrees of freedom.
This transformation is monotone in Si,j. What’s more, taking absolute value on Si,j is equivalent
to taking absolute value over whole term.

1

2
log

(
1 + |Si,j|
1− |Si,j|

)
√
n− 3 ≤ 1

2
log

(
1 + λk

1− λk

)
√
n− 3 (5.8)

We shall apply Holm-Bonferroni correction for multiple testing. So we want

P (Z ≥ 1

2
log

(
1 + λk

1− λk

)
√
n− 3) =

α

2 · (m+ 1− k)
(5.9)

where Z is r.v. following standard normal distribution. Term two in nominator comes from
taking absolute value.
Solving for λk yields,

1

2
log

(
1 + λk

1− λk

)
√
n− 3 = Φ−1

(
α

2 · (m+ 1− k)

)

log

(
1 + λk

1− λk

)
=

2Φ−1( α
2·(m+1−k)

)
√
n− 3

1 + λk

1− λk
= exp

{
2Φ−1( α

2·(m+1−k)
)

√
n− 3

}

1 + λk = (1− λk) · exp
2Φ−1( α

2·(m+1−k)
)

√
n− 3

λk =

exp
2Φ−1( α

2·(m+1−k)
)

√
n− 3

− 1

1 + exp
2Φ−1( α

2·(m+1−k)
)

√
n− 3

(5.10)

We assumed that Σ is such, that test statistics satisfy condition for Hochberg’s step up
procedure to control FWER. Hochberg’s step-up procedure rejects all hypothesis with p-values

smaller than the minimal index k satisfying p(k) ≤ Φ−1

(
α

2 · (m+ 1− k)

)
. Therefore it rejects

more hypothesis than our procedure does, so our FWER is smaller than α.
If data is not scaled, then one can multiple λ sequence by maxi>j σ̃iσ̃j, which guarantees that
(5.8) also when Si,j is covariance rather than correlation.

We can get λs more similar to Banerjee if we use Student approximation rather than normal
approximation for entries of correlation matrix.
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We’ve showed that choosing λs properly, results in true block structure matrix feasible in our
optimization problem with high probability. Now, we show that, if true Θ is block diagonal,
then objective function grows when off-block-diagonal elements are set to 0.

Lemma 5.2.7 Assume that matrix with true block-diagonal structure in problem (5.4) is feasible.
Then objective function in problem (5.4) is maximized for such a block-diagonal matrix W .

Proof

Observe that
∂ log |W |
∂W

= W−1 (5.11)

Note that when W is block-diagonal, then also W−1 is block-diagonal. So, the gradient at all
off diagonal elements is equal to zero. Because such W is invertible and feasible and because
problem (5.4) is convex, optimal solution has to have a block structure.

Proof of Theorem (5.2.5) From lemma (5.2.6), with high probability, block-diagonal matrix
is feasible. By second lemma it also maximizes objective function, so it is a solution to the dual
problem. Because for gSLOPE strong duality holds, optimal values of primal and dual are the
same (see [Boyd and Vandenberghe, 2004]) and inverse of matrix W is solution to optimization
problem (5.3).

Corollary 5.2.8 Theorem 5.2.5 has an important consequence. Because all elements of λ
sequence where smaller than in [Banerjee et al., 2008a], penalty term with those λs in graphical
smaller is more liberal than glasso. Therefore graphical SLOPE finds at least as many edges as
glasso.

Corollary 5.2.9 Theorem 5.2.5 can be rewritten to find smaller λ than the one in [Banerjee
et al., 2008a].

λ(α) = max
i>j

σ̃iσ̃j

exp
2Φ−1( α

2·m)
√
n− 3

− 1

1 + exp
2Φ−1( α

2·m)
√
n− 3

, (5.12)

where m =
p(p− 1)

2
or

λ(α) = max
i>j

σ̃iσ̃j
tn−2(α/(2 ·m))√

n− 2 + t2n−2(α/(2 ·m))

depending on which approximate distribution for the entries in precision matrix we use. Because
Bonferroni correction is one step procedure, for such λ strong FWER is controlled. We shall
use this λ in simulation study.

Corollary 5.2.10 Examples of when step-up procedure controls FWER can be found for example
in [Sarkar, 1998]. In particular it does for positive equicorrelated multivariate normal distributions
[Steck and Owen, 1962]. This type of dependency in multivariate normal is covered in our
simulation study.
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5.3 Solving optimization problem

In the previous section we focused on theoretical properties of graphical SLOPE for specific λ
sequence. Yet, for the method to be useful in practice, an efficient method for computing it is
required.

5.3.1 ADMM for SLOPE

We used alternative direction method of multipliers (ADMM) to construct new algorithm for
solving SLOPE (formulation and more details here (2.49)). Current implementation using
FISTA proves to have poor efficiency when, for example, columns of design matrix X are
highly correlated.
To derive algorithm, we first reformulate (2.49) to the form that resembles more the standard
one for ADMM (2.11).

minimize
x

1

2
(b−Ax)T (b−Ax) + σJλ(yj)

subject to x = y
(5.13)

Then augmented Lagrangian with penalty parameter µ is

Lµ(x, y, z) =
1

2
(b−Ax)T (b−Ax) + σJλ(y) + µ〈x− y, z〉+

µ

2
‖x− y‖2

F (5.14)

Optimization takes place in turns, with respect to x and y.

xk = argminxLµ(x, yk−1, zk−1)

= argminx
1

2
‖b−Ax‖2 + µ < zk−1, x > +

µ

2
‖x− yk−1‖2

Setting derivative to zero we get

0 = ∇xLµ(x, yk−1, zk−1) = −AT (b−Ax) + µzk−1 + µ(x− yk−1)

Equivalently:

AT (b−Ax) = µzk−1 + µ(x− yk−1)

AT b−ATAx) = µ(zk−1 − yk−1) + µx

−µx−ATAx) = µ(zk−1 − yk−1)−AT b

(ATA + µI)x = µ(yk−1 − zk−1) + AT b

x = (ATA + µI)−1µ(yk−1 − zk−1) + AT b

For y it is easier:

yk = argminyLµ(xk, y, zk−1)

= argminyσJλ(y)− µ〈y, zk−1〉+
µ

2
‖xk − y‖2

F

= argminyσJλ(y) +
µ

2
‖xk − (y + zk−1)‖2

F
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This can efficiently solved using prox function defined by [Bogdan et al., 2015a].

yk = proxσλ/µ(xk + zk−1)

Algorithm

In this section we present detailed description of algorithms for solving SLOPE using ADMM.

Algorithm 9 ADMM for SLOPE

y0 ← ỹ. z0 ← z̃, k ← 1, µ← µ0 > 0, {algorithm initialization}
while convergence criterion is not satisfied do
xk+1 = (ATA + µI)−1µ(yk − zk) + AT b
yk+1 = proxσλ/µ(xk+1 + zk)
zk+1 := zk + µ(xk+1 − yk+1)

end while

Comparing SLOPE FISTA vs ADMM

In this section we compare two implementations of SLOPE. First is FISTA-based present in R
package SLOPE. Second is ADMM written also in R.
Number of variables is 400, number of observations is 100. Design matrix is generated from
multivariate normal distribution with covariance matrix having diagonal elements equal 1 and
off-diagonal elements all equal to ρ. Big ρ corresponds to highly correlated columns in design
matrix. There are 5 variables with non-zero coefficient that are randomly selected. Response
vector is selected according to linear model with error drawn from normal distribution with
σ2 = 1.

Table 5.1: SLOPE FISTA vs ADMM. Highly correlated columns. Time comparison, ale times
in seconds

ρ Mean FISTA Standard deviation FISTA Mean ADMM Standard deviation ADMM
0.20 0.53 0.43 0.12 0.00
0.50 1.82 1.04 0.12 0.01
0.80 1.88 1.72 0.11 0.02

ADMM implementation proves to be much more stable. Execution time for FISTA implementation
depends on covariance structure.
We also performed experiment in which we compare performance, when variance of columns
in data matrix X differs significantly. This is a typical setup expected if SLOPE is be used in
adaptive way.
Again ADMM implementation proves to be much more stable. Execution time for FISTA
implementation significantly depends on the difference in variance for columns of design matrix.

5.3.2 ADMM for gSLOPE

The solution to (5.2.1) can be found using alternative direction method of multipliers (ADMM).
Details about this method can be found in chapter with mathematical introduction.

We reformulate 5.3 to the form that resembles more the standard form for ADMM (2.11).
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Table 5.2: SLOPE FISTA vs ADMM. Columns with significant differences in variance. Time
comparison, ale times in seconds

Max diff in variance Mean FISTA Sd FISTA Mean ADMM Sd ADMM
101 0.13 0.03 0.10 0.01
102 0.19 0.05 0.12 0.02
103 0.30 0.10 0.12 0.02
104 0.65 0.37 0.13 0.01

minimize
X

− log det(X) + Tr ((SX) + IX�0(X) + Jλ(Y )

subject to X = Y
(5.15)

Then augmented Lagrangian with penalty parameter µ is

Lµ(X, Y, Z) = log det(X) + Tr (SX) + IX�0(X) + Jλ(Y ) + µ〈X − Y, Z〉+
µ

2
‖X − Y ‖2

F (5.16)

Now, optimization takes place in turns, with respect to X and Y.

Xk = argminXLµ(X, Yk−1, Zk−1)

= argminX − logdetX+ < X,S > +‖Yk−1‖Jλ + µ < Zk−1, X − Yk−1 > +
µ

2
‖X − Yk−1‖2

F

= argminX − logdetX+ < X,S > +µ < Zk−1, X > +
µ

2
‖X − Yk−1‖2

F

= argminX − logdetX +
µ

2
‖X + (Zk−1 +

1

µ
S− Yk−1)‖2

F

Let us denote S̃k−1 = Zk−1 + 1
µ
S − Yk−1. This can be viewed as approximated covariance

matrix, that is why we use this notation.

Let us take derivative of augmented logarithm with respect to X and look for X∗ that sets
it 0.

∇XLµ(X, Yk−1, Zk−1) = −X−1 + µX − µS̃k−1

We do eigenvalue decomposition of tildeSk−1

S̃k−1 = UΛUT , Λ = diag(λi)

Observe that

X∗ = Udiag

(
1

2
(λi +

√
λ2
i +

4

µ
)

)
UT

Solves our gradient equation:
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∇XLµ(X, Yk−1, Zk−1) = −X−1 + µX − µS̃k−1

= −Udiag

 1

1
2
(λi +

√
λ2
i + 4

µ

)

UT + Udiag

(
µ

1

2
(λi +

√
λ2
i +

4

µ
)

)
UT − µUΛUT

= Udiag

− 1

1
2
(λi +

√
λ2
i + 4

µ
)

+ µ
1

2
(λi +

√
λ2
i +

4

µ
)− µλi

UT

= Udiag

−2
λi −

√
λ2
i + 4

µ

(λi −
√
λ2
i + 4

µ
)(λi +

√
λ2
i + 4

µ
)
− µ1

2
λi +

1

2
µ

√
λ2
i +

4

µ
)

UT

= Udiag

−2
λi −

√
λ2
i + 4

µ

λ2
i − λ2

i − 4
µ

− µ1

2
λi +

1

2
µ

√
λ2
i +

4

µ
)

UT

= Udiag

(
1

2
µ

(
λi −

√
λ2
i +

4

µ

)
− µ1

2
λi +

1

2
µ

√
λ2
i +

4

µ
)

)
UT

= 0

Optimization with respect to Y is somewhat less complicated.

Yk = argminYLµ(Xk, Y, Zk−1)

= argminY − logdetXk+ < Xk, C > +‖Y ‖Jλ + µ < Zk−1, Xk − Y > +
µ

2
‖Xk − Y ‖2

F

= argminY ‖Y ‖Jλ +
µ

2
‖Y − (Xk + Zk−1)‖2

F

This means that we can update Yk using prox function from [Bogdan et al., 2015a] just like we
did in case of SLOPE.

Yk = proxλ/µ(Xk + Zk−1)

5.3.3 Algorithm

In this section we present detailed description of algorithms for solving graphical SLOPE using
ADMM.

Algorithm 10 ADMM for gslope - non-scaled version

Y0 ← Ỹ . Z0 ← Z̃, k ← 1, µ← µ0 > 0, {algorithm initialization}
while convergence criterion is not satisfied do

Perform eigenvalue decomposition of matrix Zk + 1
µ
S− Yk = Udiag(λi)U

T

Xk+1 := Udiag
(

1
2
(λi +

√
λ2
i + 4

µ
)
)
UT

Yk+1 := proxλ/µ(Xk+1 + Zk)
Zk+1 := Zk + µ(Xk+1 − Yk+1)

end while
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or in a scaled form using V = 1
µ
Z

Algorithm 11 Simulation scheme for a signal matrix with equal singular values

U0 ← Ũ . Z0 ← Z̃, k ← 1, µ← µ0 > 0, {algorithm initialization}
while convergence criterion is not satisfied do

Perform eigenvalue decomposition of matrix µVk + 1
µ
S− Yk = Udiag(λi)U

T

Xk+1 := Udiag
(

1
2
(λi +

√
λ2
i + 4

µ
)
)
UT

Yk+1 := proxλ/µ(Xk+1 + µVk)

Uk+1 := Uk +Xk+1 − Yk+1

end while

As proved by [Boyd et al., 2011], sufficient convergence criterion is that primal and dual
feasibility is met.

Theorem 5.3.1 Algorithm (10) converges to the solution of the problem (5.2.1)

Proof
We shall check that conditions for convergence from [Boyd et al., 2011] are met. Firstly, notice
that both functions that are part of goal − log det(X) + trace(SX) + IX�0(X) and Jλ(Y ) are
obviously convex, closed and proper.
Remaining part is showing that unaugmented Lagrangian has a saddle point

log det(X)− Tr (SX)− max
JDλ (U)≤1

Tr (UX)

As assumptions for the Saddle Point Theorem (see [Boyd and Vandenberghe, 2004]) are strong
duality and Slater’s condition, we know that Lagrangian has saddle point, as we previously
proved that these two are satisfied.

5.4 Simulations

In this section, we present the result of simulation studies, in which we compare Graphical
SLOPE with other methods of graph estimation. To measure the quality of the procedures
we use their effectiveness and execution time. We also present time comparison for two
implementations of SLOPE.

5.4.1 Methods

In our simulations we compare following methods:

1. Graphical Lasso with λ from [Banerjee et al., 2008a]

2. Graphical Lasso with enhanced choice of λ

3. Graphical SLOPE with λ sequence inspired by Holm correction for multiple testing

4. Graphical SLOPE with λ sequence inspired by Benjamini-Hochberg correction for multiple
testing
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5.4.2 Simulation scenarios

Scenario 1. In the first scenario we evaluated performance in block-diagonal precision matrix.
Set of variables is divided into a number of blocks. Elements from separate blocks are
conditionally independent. Within each block all partial correlations are nonzero. We
tested different number of variables, observations, value of nonzero partial correlations
and α levels. Example of such graph can be seen in figure (5.1).

Figure 5.1: Example of block diagonal graph structure

Algorithm 12 Simulation scheme for a block-diagonal precision matrix

Input: Number of observations n, number of variables p, α, value of off-diagonal entry in
precision matrix ρ and block size b

1: Create diagonal matrix Θ
2: For each block, set every entry of the precision matrix Θ within this block to ρ
3: Generate data using multivariate normal distribution with mean equal zero vector, and

covariance matrix equal Σ = Θ−1.

Scenario 2. Second scenario is for hub structure precision matrix. Set of all variables is divided
into subgroups of size 10. Groups are partially independent. Within groups, one variable
is connected to all the others. Rest are partially independent. Example of such graph
can be seen in figure (5.2).
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Figure 5.2: Example of hub graph structure

Algorithm 13 Simulation scheme for a hub precision matrix

Input: Number of observations n, number of variables p, α, value of off-diagonal entry in
precision matrix ρ and size of hub is 10.

1: Create diagonal matrix Θ
2: For each hub, choose one variable. Set every entry of the precision matrix Θ, that is

associated with this variable, within this hub to ρ
3: Generate data using multivariate normal distribution with mean equal zero vector, and

precision matrix equal Σ = Θ−1.

Scenario 3. Third scenario banded structure. All but first and last variables have nonzero
partial correlation with two other variables, its predecessor and successor. First and
last variable are ’connected’ to just one variable. Example of such graph can be seen in
figure (5.3).
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Figure 5.3: Example of banded graph structure

Algorithm 14 Simulation scheme for a banded precision matrix

Input: Number of observations n, number of variables p, α, value of off-diagonal entry in
precision matrix ρ and size of hub is 10.

1: Create diagonal matrix Θ
2: for i ∈ {1, . . . , p} do
3: if i > 0 then
4: θi−1,i = θi,i−1 := ρ
5: end if
6: if i < p then
7: θi,i+1 = θi+1,i := ρ
8: end if
9: end for

10: Generate data using multivariate normal distribution with mean equal zero vector, and
precision matrix equal Σ = Θ−1.

5.4.3 Estimation of performance metrics

To compare graph estimation we use three measures. Let us use the following notation E is
the set of all edges, D is the set of edges discovered by some procedure. Ei and Di denotes set
of true and discovered edges for ith variable

1. power, fraction of edges in the graph discovered by method

power :=
|E ∩D|
|D|

(5.17)
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2. false discovery rate (FDR)

FDR :=
|D \ E|
|D|

, (5.18)

fraction of wrong discoveries to all discoveries

3. local false discovery rate (local FDR)

local FDR :=

∑p
i=1

Di \ Ei|
|Di|

p
, (5.19)

average fraction of wrong discoveries to all discoveries per one variable

4. family-wise error rate (FWER)

FWER := |D \ E| > 0 (5.20)

In the following sections, we report average value of these metrics calculated in each simulation
repetition.

5.4.4 Block diagonal matrix

In this simulation, data is drawn 1000 times according to the algorithm (12).
We compared performance for a grid of parameters

1. numbers of variables in the data set, varying from 60 to 200

2. number of observations in the data set, varying from 100 to 800

3. value of nonzero elements in precision matrix ρ ∈ [0.2, 0.7]

4. nominal FDR/FWER level in range α ∈ (0.05, 0.2)

Full simulations results are available online. Here we show and comment on selected results.
When the number of observations grows, then the signal is relatively stronger, and all methods

have higher power. Recall that λs from Banerjee et al. [2008a] are getting smaller when n grows.
Therefore we expect that power of any statistical method to grow with n. This intuition is
backed up by the simulation results, see e.g. (5.8). Because glasso is consistent under certain
assumptions, one might expect that FDR should go to zero as n grows. In fact this is what
we observe. What is more interesting, in multiple scenarios, FDR is controlled for gSLOPE
with BH sequence. We do not provide any theoretical justification for this fact, but it seems,
that we λ sequence is selected in a proper way. The bigger is the value on nonzero elements in
precision matrix, the higher power is achieved by all of the methods.

5.4.5 Hub structure matrix

In this simulations, data is drawn 100 times according to the algorithm (13).
We compared performance for a grid of parameters

1. numbers of variables in the data set, varying from 30 to 200
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Figure 5.4: Graphical SLOPE. Block diagonal matrix. p is small (60), α is average - 0.1
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Figure 5.5: Graphical SLOPE. Block diagonal matrix. p is small (60), α is big - 0.2

Figure 5.6: Graphical SLOPE. Block diagonal matrix. p is small (60), α is also small - 0.05
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Figure 5.7: Graphical SLOPE. Block diagonal matrix. p is large (200), α is also high - 0.2

Figure 5.8: Graphical SLOPE. Block diagonal matrix. p is large (200), α is small - 0.05
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2. number of observations in the data set, varying from 50 to 800

3. value of nonzero elements in precision matrix ρ ∈ [0.1, 0.5]

4. nominal FDR/FWER level in range α ∈ (0.01, 0.1)

Full simulations results are available online. Here we show and comment on selected results.
When the number of observations grows, then the signal is relatively stronger, and all methods
have higher power. Again, as in block diagonal case, recall that λs from Banerjee et al. [2008a]
are getting smaller when n grows. Therefore we expect that power of any statistical method to
grow with n. This intuition is backed up by the simulation results, see e.g. (??). As expected
by the choice of λ sequence for gSLOPE, it has higher power than glasso. This difference can
be substantial, even 2 times higher.
In the case of hub structure neither FWER nor FDR are controlled. This is because this
particular simulation scenario violates assumption for glasso consistency. Interestingly, when
precision matrix entries ρ are smaller than 0.2, FDR seems to be controlled. This is again an
insightful finding that proves usefulness of gSLOPE.
Naturally, as in block diagonal case, the bigger is the value on nonzero elements in precision
matrix, the higher power is achieved by all of the methods.

Figure 5.9: Graphical SLOPE. Hub matrix. p is small (30), α is average - 0.05

5.4.6 Banded matrix

In this simulations, data is drawn 100 times according to the algorithm (14).
We compared performance for a grid of parameters
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Figure 5.10: Graphical SLOPE. Hub matrix. p is small (30), α is small - 0.01

Figure 5.11: Graphical SLOPE. Hub matrix. p is average (50), α is small - 0.01
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Figure 5.12: Graphical SLOPE. Hub matrix. p is average (50), α is large - 0.1

Figure 5.13: Graphical SLOPE. Hub matrix. p is average (100), α is small - 0.01
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Figure 5.14: Graphical SLOPE. Hub matrix. p is average (100), α is large - 0.1

1. numbers of variables in the data set, varying from 30 to 200

2. number of observations in the data set, varying from 50 to 800

3. value of nonzero elements in precision matrix ρ ∈ [0.1, 0.5]

4. nominal FDR/FWER level in range α ∈ (0.01, 0.1)

Full simulations results are available online. Here we show and comment on selected results.
When the number of observations grows, then the signal is relatively stronger, and all methods
have higher power. Again, as in block diagonal case, recall that λs from Banerjee et al. [2008a]
are getting smaller when n grows. Therefore we expect that power of any statistical method to
grow with n. This intuition is backed up by the simulation results, see e.g. (??). As expected
by the choice of λ sequence for gSLOPE, it has higher power than glasso. This difference can
be substantial, even 2 times higher.
Just like in the case of hub structure, neither FWER nor FDR are controlled. Interestingly, also
just like for hub structure, when precision matrix entries ρ are smaller than 0.2, FDR seems to
be controlled. This is again an insightful finding that proves usefulness of gSLOPE.
Naturally, as in block diagonal case, the bigger is the value on nonzero elements in precision
matrix, the higher power is achieved by all of the methods.

5.4.7 FWER block diagonal matrix

In this simulation, data is drawn 100 times according to the Algorithm 12.
We compared performance for a grid of parameters
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Figure 5.15: Graphical SLOPE. Banded matrix. p is small (30), α is average - 0.05

Figure 5.16: Graphical SLOPE. Banded matrix. p is small (30), α is small - 0.01
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Figure 5.17: Graphical SLOPE. Banded matrix. p is average (50), α is small - 0.01

Figure 5.18: Graphical SLOPE. Banded matrix. p is average (50), α is large - 0.1
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Figure 5.19: Graphical SLOPE. Banded matrix. p is average (100), α is small - 0.01

Figure 5.20: Graphical SLOPE. Banded matrix. p is average (100), α is large - 0.1
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1. numbers of variables in the data set, varying from 60 to 200

2. number of observations in the data set, varying from 100 to 800

3. value of nonzero elements in precision matrix ρ ∈ [0.2, 0.7]

4. nominal FDR/FWER level in range α ∈ (0.05, 0.2)

Here we show and comment on selected results. We focus only on FWER as we discussed
power in the previous sections. Both glasso and gSLOPE with Holm’s correction control FWER.
This is expected because simulation settings are in accordance with assumptions of Theorem
5.2.5. Glasso with improved λ and gSLOPE with Holm’s sequence have FWER very close to
level α. When correlation and α are small all methods become very conservative and even BH
gSLOPE is close to controlling FWER.

Figure 5.21: Graphical SLOPE. FWER control. p is small (60), α is big - 0.2

5.4.8 ROC curve

In this simulation, data was drawn according to the Algorithm 8. We used it previously in
chapter on subspace clustering. It is of interest, as it tries to mimic genetic data, in which
groups of variables act together in genetic pathways. We are interested in whether gSLOPE
is better estimator than glasso. This time comparison is based on ROC curve. On x axis we
have false positive rate, on y axis – true positive rate. The higher the curve is, the better is
the estimator as it provides more true discoveries at the same number of false discoveries.
We compared performance for a grid of parameters
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Figure 5.22: Graphical SLOPE. FWER control. p is average (100), α is small - 0.05

Figure 5.23: Graphical SLOPE. FWER control. p is large (200), α is small - 0.005
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1. numbers of variables in the data set, varying from 50 to 100

2. number of observations in the data set, varying from 200 to 800

3. value of signal to noise ratio (defined in section 3.3.2. SNR ∈ (1, 2, 3)

4. nominal FDR/FWER level varies. Each point on the ROC curve corresponds to some α

Figure 5.24: Graphical SLOPE. ROC curve. p is average (100), n is 800

It can be seen that ROC curve for graphical SLOPE lies consistently above the curve for
glasso with λ from Banerjee et al. [2008a] paper. The stronger the signal gets, the bigger is the
difference. This proves that it makes sense to use graphical SLOPEin practice, as area under
ROC curve (AUC) is one of the most important metric taken into account in choosing model
for the data.

5.4.9 Summary of simulation results

Graphical SLOPE proved to be a competitive method compared to the popular glasso. λ
sequence inspired by Holm’s correction for multiple testing controls FWER under various
scenarios and yields higher power than glasso with λ from Banerjee et al. [2008a]. For specific
matrix structures, when correlations are small, λ inspired by Benjamini-Hochberg correction for
multiple testing, leads to gSLOPE that controls FDR. At the same time it yields much higher
power than glasso. When correlations are high, FDR is not controlled. Preliminary simulation
results suggest that gSLOPE might control local FDR (average FDR per variable). This is a
topic of an ongoing research.

116



Chapter 5. Graphical Slope 5.4. Simulations

Figure 5.25: Graphical SLOPE. ROC curve. p is average (100), n is 200
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